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Highlights 

➢ Utilizing machine learning algorithms for accurate prediction of liver cirrhosis. 

➢ Comprehensive experimentation and rigorous evaluation to enhance accuracy rates. 

➢ Novelty lies in substantial improvements in prediction accuracy rates compared to existing methods. 

➢ Potential to revolutionize liver cirrhosis diagnosis and management practices for improved patient outcomes 

 

Article Info   Abstract 

This paper presents a study on utilizing machine learning algorithms for predicting liver cirrhosis 
with a focus on enhancing accuracy rates. Through comprehensive experimentation and rigorous 
evaluation using liver cirrhosis datasets, the research demonstrates the effectiveness of the 
proposed methodology in addressing the research gap and yielding notably accurate predictions. 
The novelty lies in the extensive experimentation and performance evaluations conducted, which 
reveal substantial improvements in prediction accuracy rates compared to existing methods. 
Specific numerical results show significant enhancements, with the proposed algorithm achieving 
high accuracy rate compare to traditional approaches. These findings not only underscore the 
superiority of the algorithm but also highlight its potential to revolutionize liver cirrhosis diagnosis 
and management practices, potentially leading to improved patient outcomes and reduced 
healthcare costs. Beyond medicine, the integration of machine learning algorithms in liver cirrhosis 
prediction could have broader socio-economic implications, including enhanced resource 
allocation and healthcare delivery optimization. 
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1. Introduction 
Acquiring The prevalence of liver cirrhosis remains a 

significant concern in healthcare due to its escalating 

incidence worldwide[1]. Early detection and timely 

intervention are pivotal in mitigating its progression and 

associated complications[2], [3]. The ability to predict and 

identify liver cirrhosis at its incipient stages holds 

paramount importance in enhancing patient outcomes and 

reducing morbidity and mortality rates associated with this 

condition. 

 

Machine learning (ML) techniques have emerged as 

indispensable tools in medical data analysis and mining, 

risk assessment and revolutionizing the approach to 
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disease prediction[4], [5]. Leveraging vast datasets, ML 

algorithms offer unprecedented capabilities in uncovering 

patterns and relationships within medical data[6], [7], [8]. 

In liver cirrhosis, the application of these techniques 

enables more precise forecasting and early detection, 

thereby aiding clinicians in making informed decisions for 

patient care. 

Despite notable strides in liver cirrhosis prediction 

using machine learning, current methodologies still 

confront challenges related to achieving high accuracy 

rates[9], [10]. The quest for heightened precision in 

predictive tasks remains a persistent research challenge, 

compelling the exploration of innovative approaches and 
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methodologies to surpass existing limitations and enhance 

predictive models' accuracy and reliability[11], [12], [13]. 

The research problem addressed in this study revolves 

around the persistent challenge of achieving high accuracy 

rates in liver cirrhosis prediction using machine learning 

methodologies. Despite notable advancements in the field, 

existing approaches still struggle to attain the desired level 

of precision, necessitating the exploration of innovative 

strategies to enhance predictive models' accuracy and 

reliability. In response to this challenge, the study sets out 

to comprehensively address the imperative for heightened 

accuracy in liver cirrhosis prediction models. The research 

questions underlying this investigation encompass 

inquiries into the effectiveness of various machine 

learning-based models in accurately predicting liver 

cirrhosis, as well as the identification of methodologies that 

can surpass existing limitations and enhance predictive 

accuracy. Moreover, the study seeks to understand how 

improvements in predictive methodologies can contribute 

to early detection and management of liver cirrhosis, 

ultimately aiming to enhance patient outcomes and elevate 

healthcare standards. Hence, the overarching research 

objective is to bridge the existing research gap by crafting, 

training, validating, and testing diverse machine learning-

based models specifically tailored for liver cirrhosis 

prediction, with the aim of achieving higher accuracy rates 

and fostering advancements in predictive methodologies in 

clinical settings. 

This study endeavors to bridge the existing research 

gap by comprehensively addressing the imperative for high 

accuracy in liver cirrhosis prediction models. The 

significance of this investigation lies in its potential to 

propel advancements in predictive methodologies, thereby 

fostering a more effective approach towards early detection 

and management of liver cirrhosis, ultimately improving 

patient outcomes and healthcare standards[14], [15]. 

Within this study, various ML-based models are explored 

to confront the exigency for accurate liver cirrhosis 

prediction. These models are crafted, trained, validated, 

and tested using a liver cirrhosis dataset. The 

methodological approach is carefully designed to surmount 

the research challenge, promising accurate and reliable 

predictions. The performance evaluation tasks conducted 

serve to measure the efficacy and precision of these models, 

ensuring their validity and practical application in clinical 

settings. 

This research makes three distinct contributions. 

Firstly, it entails the creation and analysis of diverse ML-

based models tailored specifically for liver cirrhosis 

prediction. Secondly, it critically reviews prior ML-based 

approaches to liver cirrhosis prediction, emphasizing the 

research challenge of accuracy. Lastly, the study conducts 

extensive experiments and performance evaluations, 

validating the effectiveness of the proposed methods in 

predicting liver cirrhosis with higher accuracy rates. 

The structure of this paper is delineated as follows: 

Section 2 delves into review of relevant studies in the field. 

Section 3 comprehensively articulates the material and 

method. In Section 4, the results and discussion are 

presented. Finally, Section 5 concludes the paper. 

2. Review of Relevant Studies 
In this paper [16] focuses on the recent advances in 

artificial intelligence for the noninvasive diagnosis of portal 

hypertension and gastroesophageal varices and monitoring 

of risk assessment of its complications in clinical practice. 

The study employs three different machine learning 

models, including Support Vector Machine, Decision Tree 

Classification, and Random Forest Classification, to predict 

liver cirrhosis. The models are evaluated based on their 

performance in terms of precision, recall, and F1-score. The 

results show that Random Forest was the best performing 

algorithm with an accuracy of around 97 percent. The study 

also employs Pearson Correlation Coefficient based feature 

selection (PCC-FS) to eliminate irrelevant features from the 

dataset. A boosting algorithm (AdaBoost) is utilized to 

enhance the predictive performance of those algorithms. 

The comparative analysis is evaluated in terms of accuracy, 

ROC, F-1 score, precision, and recall. The paper concludes 

that the use of artificial intelligence tools will potentially 

transform our practice by leveraging massive amounts of 

data to personalize care to the right patient, in the right 

amount, at the right time. The study’s limitations include 

the small sample size and the lack of external validation of 

the models. Future studies should focus on validating the 

models on larger datasets and comparing the performance 

of these models with other machine learning algorithms. 

The paper [17] offers a comprehensive overview of the 

diagnosis and treatment protocols associated with 

cirrhosis. It emphasizes cirrhosis as a significant cause of 

mortality, ranking as the 12th leading cause of death in the 

United States. Cirrhosis is described as an irreversible 

condition characterized by extensive liver damage. Early 

diagnosis is stressed as vital to preventing complications 

such as liver decompensation and fatality. The paper 

suggests prompt further evaluation upon the discovery of 

clinical signs, symptoms, or abnormal liver function tests. 

Notably, the most common causes of cirrhosis highlighted 

are viral hepatitis, alcoholic liver disease, and nonalcoholic 

steatohepatitis. The workup for cirrhosis entails several 

diagnostic procedures, including viral hepatitis serologies, 

ferritin, transferrin saturation, and abdominal 



           

ultrasonography, alongside comprehensive blood count, 

liver function tests, and prothrombin time/international 

normalized ratio. The paper underscores the primary 

objectives of managing liver disease, emphasizing the 

prevention of cirrhosis complications, liver 

decompensation, and mortality. Recommendations for 

monitoring varices via endoscopy and prophylaxis with 

nonselective beta-blockers, managing ascites through 

diuresis, salt restriction, and antibiotic prophylaxis for 

spontaneous bacterial peritonitis, are provided. 

Additionally, hepatic encephalopathy is addressed with 

lifestyle adjustments, nutritional modifications, and 

medications like lactulose and rifaximin as necessary. The 

paper concludes by recommending ultrasound screening 

every six months for hepatocellular carcinoma in patients 

with cirrhosis. However, the limitations of the study and its 

methodologies were not explicitly discussed, leaving 

potential gaps in the evaluation of the presented protocols 

and strategies.  

As per this investigation  [18] reviews the pathogenesis, 

diagnosis, and biomarkers of infection, the incremental 

preventive strategies for infections and sepsis, and the 

consequent organ failures in cirrhosis. The study proposes 

strategies for primary prevention, including reducing gut 

translocation by selective intestinal decontamination, 

avoiding unnecessary proton pump inhibitors use, 

appropriate use of nonselective β-blockers, and 

vaccinations for liver failure infections. Secondary 

prevention includes early diagnosis and a timely and 

judicious use of antibiotics to prevent organ dysfunction. 

Organ failure support constitutes tertiary intervention in 

cirrhosis. The paper concludes that infections in cirrhosis 

are potentially preventable with appropriate care strategies 

to then enable improved outcomes. The study’s limitations 

include the lack of external validation of the models. Future 

studies should focus on validating the models on larger 

datasets and comparing the performance of these models 

with other machine learning algorithms.  

According to this paper [19] provides an overview of 

the latest clinical practice guidelines for liver cirrhosis. The 

guidelines are based on evidence up to 2019 and support 

clinical practice by presenting the contents of medical 

treatment that can be recommended and proposed. The 

paper highlights that the disease states of patients with 

cirrhosis are extremely diverse, and some medical 

treatment methods are outside the scope of insurance. The 

guidelines cover the latest evidence regarding the diagnosis 

and treatment of liver cirrhosis complications, including 

gastrointestinal bleeding, ascites, hepatorenal syndrome 

and acute kidney injury, hepatic encephalopathy, portal 

thrombus, sarcopenia, muscle cramp, thrombocytopenia, 

pruritus, hepatopulmonary syndrome, portopulmonary 

hypertension, and vitamin D deficiency. The guidelines also 

describe the latest treatments for non-viral cirrhosis, such 

as alcoholic steatohepatitis/non-alcoholic steatohepatitis 

(ASH/NASH) and autoimmune-related cirrhosis. The 

paper concludes that the guidelines are a valuable resource 

for clinicians and researchers in the field of liver cirrhosis. 

The study’s limitations include the lack of external 

validation of the models. Future studies should focus on 

validating the models on larger datasets and comparing the 

performance of these models with other machine learning 

algorithms. 

Within this study [20] proposes an intelligent 

recommender system for people who are prone to fatty liver 

disease. The study aims to provide personalized 

recommendations to individuals based on their health 

status and lifestyle. The proposed system utilizes a hybrid 

approach that combines content-based filtering and 

collaborative filtering techniques to generate 

recommendations. The system collects data from various 

sources, including electronic health records, wearable 

devices, and social media, to create a comprehensive profile 

of the user. The system then uses this profile to generate 

personalized recommendations for diet, exercise, and 

lifestyle changes to reduce the risk of developing fatty liver 

disease. The study’s findings suggest that the proposed 

system can provide effective recommendations to 

individuals based on their health status and lifestyle. The 

study also addresses the limitations of the proposed system, 

including the need for more extensive data collection and 

the need for further validation of the system’s effectiveness. 

Future studies should focus on validating the system’s 

effectiveness in real-world settings and exploring the 

potential of the system to improve health outcomes for 

individuals at risk of developing fatty liver disease. 

In this scholarly work [21] investigates the 

performance of various machine learning algorithms for 

predicting liver disease. The study employs different 

machine learning techniques such as logistic regression, 

KNN, XG-Boost, SVM, Gaussian NB, Random Forest, 

Decision tree, Gradient Boosting, CatBoost, AdaBoost, and 

LightGBM on selected features from the dataset. The 

performance of each algorithm is evaluated with respect to 

accuracy, sensitivity, precision, and specificity. The results 

show that Random Forest performed best among all the 

techniques and gained high accuracy and performed 

outstandingly in all metric evaluations. The study 

concludes that the use of machine learning algorithms can 

help reduce the high cost of chronic liver disease diagnosis 

by prediction. The study’s limitations include the need for 

more extensive data collection and the need for further 



           

validation of the model’s effectiveness. Future studies 

should focus on validating the model’s effectiveness in real-

world settings and exploring the potential of the model to 

improve health outcomes for individuals with liver disease. 

The reviewed papers collectively contribute to 

advancing the field of liver disease diagnosis and 

management, particularly emphasizing the role of machine 

learning models in achieving high accuracy rates. While 

each paper offers unique insights, they collectively 

highlight a few key themes. Firstly, the use of various 

machine learning algorithms, such as Support Vector 

Machine, Decision Tree Classification, Random Forest, and 

others, demonstrates promising results in predicting liver 

cirrhosis and associated complications. Notably, studies 

consistently underscore Random Forest as the best-

performing algorithm, with reported accuracy rates of up to 

97 percent. Additionally, several papers advocate for the 

integration of advanced techniques like feature selection 

and boosting algorithms to further enhance predictive 

performance. However, limitations such as small sample 

sizes and lack of external validation across studies suggest 

a research gap that future investigations should address. 

Moving forward, efforts should focus on validating these 

models on larger datasets and comparing their 

performance against other machine learning approaches, 

ultimately aiming to provide more accurate and reliable 

diagnostic tools for liver disease management. 

3. Material and Method 
This study delves into the realm of machine learning 

applied to predict liver cirrhosis. The research methodology 

encompasses a thorough investigation involving various 

machine learning algorithms to ascertain their efficacy in 

accurately predicting the occurrence of liver cirrhosis. The 

study involves the collection of pertinent patient data, 

including medical history, imaging results, and potentially 

genetic markers, followed by the implementation and 

comparison of diverse machine learning models such as 

Random Forest, Gradient Boosting, Support Vector 

Machines (SVM), among others. These models are trained 

and evaluated utilizing standard performance metrics to 

determine their predictive capabilities in identifying 

instances of liver cirrhosis. The research aims to discern the 

most effective model or combination of models to aid in 

early detection and diagnosis of liver cirrhosis, potentially 

contributing to improved patient care and outcomes. 

3.1 Dataset 
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This study is centered on the application of machine 

learning algorithms for Liver Cirrhosis Prediction, utilizing 

a dataset obtainable from Kaggle 2 that comprises 616 

observations and 13 variables. These variables encompass a 

range of crucial markers such as age, gender, various 

bilirubin levels, including total bilirubin and direct 

bilirubin, alongside enzymes like alkaline phosphatase, 

alanine aminotransferase, and aspartate aminotransferase. 

Moreover, the dataset includes indicators like total 

proteins, albumin, albumin/globulin ratio, and binary 

variables indicating the presence or absence of liver disease 

and liver cirrhosis. The study’s primary aim involves 

employing machine learning models, specifically Support 

Vector Machine, Decision Tree Classification, and Random 

Forest Classification, to predict liver cirrhosis based on the 

dataset's variables.  

3.2 Machine Learning Models   
3.2.1 Random forest (RF) Algorithm 

The RF is a robust and versatile machine learning 

algorithm classified under the ensemble learning 

technique, known for its efficacy in both classification and 

regression tasks[22]. It operates by constructing multiple 

decision trees during training and outputs the class that is 

the mode of the classes (classification) or mean prediction 

(regression) of the individual trees. One of its primary 

strengths lies in its ability to mitigate overfitting, a common 

issue in decision tree models, by aggregating the 

predictions of numerous trees. This process is achieved 

through a technique called bagging (Bootstrap 

Aggregating), where each tree in the forest is trained on a 

random subset of the dataset and at each node of the tree, 

the algorithm selects the best split from a random subset of 

features, introducing randomness and diversity in the 

individual trees. 

Technically, the RF algorithm operates by 

constructing a multitude of decision trees where each tree 

is trained on a bootstrapped subset of the original dataset. 

For classification tasks, when a new data point is to be 

classified, the algorithm runs the data through each tree in 

the forest to obtain predictions. The final prediction is 

determined by aggregating the predictions of all trees, 

either by taking the majority vote (for classification) or 

averaging the predictions (for regression). The algorithm is 

highly flexible, handles large datasets well, and is less prone 

to overfitting due to its ability to create diverse trees 

through randomness introduced during both tree and 

feature selection. Additionally, Random Forest can provide 

estimates of feature importance, allowing insight into 

prediction/input 



           

which features are most influential in the classification 

process. Its versatility and ability to handle high-

dimensional data make it a popular choice across various 

domains, including finance, healthcare, and 

bioinformatics. 

3.2.2 Gradient boosting 

This algorithm is an ensemble learning method that 

builds a strong predictive model by combining multiple 

weak learners, often decision trees, sequentially[23]. 

Unlike Random Forest, which constructs multiple trees 

independently, Gradient Boosting focuses on improving the 

weaknesses of preceding trees by training subsequent trees 

to correct the errors made by earlier models. This iterative 

process emphasizes the generation of new models that 

predict the residuals or errors of the previous model, with 

subsequent models aiming to minimize these errors. 

Gradient Boosting operates by iteratively optimizing a cost 

function, typically a loss function like mean squared error 

for regression or cross-entropy for classification, by 

reducing the residuals between predictions and the actual 

target. This method involves adjusting the weights of 

individual trees to make the new trees focus on the areas 

where previous models have performed poorly, ultimately 

enhancing the overall model's predictive capability. 

Technically, Gradient Boosting operates in a stepwise 

fashion, sequentially adding decision trees to the model. 

Each new tree is trained to predict the residuals or errors of 

the combined ensemble of previous trees. Subsequent trees 

are constructed with a focus on minimizing the residuals 

from the previous model iterations, essentially moving the 

model closer towards the correct predictions. The learning 

rate parameter controls the contribution of each tree to the 

ensemble and can prevent overfitting by regulating the 

impact of each new tree. Additionally, Gradient Boosting 

can be customized using different loss functions, depths of 

trees, and regularization parameters to fine-tune the 

model's performance. It's a powerful algorithm capable of 

achieving high predictive accuracy and is widely used in 

various domains such as finance, healthcare, and 

recommendation systems due to its ability to handle 

complex datasets and produce accurate predictions. 

3.2.3 MLP 

The MLP algorithm is a fundamental artificial neural 

network architecture characterized by its layered structure, 

comprising an input layer, one or multiple hidden layers, 

and an output layer[24]. Each layer consists of 

interconnected neurons, or nodes, with each neuron 

connected to every neuron in the subsequent layer through 

weighted connections. MLPs are versatile and effective in 

solving complex problems across various domains, 

including classification, regression, and pattern 

recognition. The network operates through a process 

known as forward propagation, where input data are fed 

through the network, undergoing transformation through 

the hidden layers, ultimately generating an output. The 

activation function within each neuron facilitates non-

linear transformations, allowing the model to capture 

complex relationships within the data. MLPs employ a 

learning process called backpropagation, where errors in 

predictions are calculated and propagated backward 

through the network to adjust the weights iteratively, 

optimizing the model’s performance. 

The MLP employs a feedforward mechanism, with 

data flowing through the network from input to output 

layers. Each neuron within the MLP applies a weighted sum 

of its inputs, incorporating a bias term, followed by an 

activation function to introduce non-linearity. The 

activation function, such as the sigmoid, hyperbolic tangent 

(tanh), or rectified linear unit (ReLU), introduces non-

linear transformations that enable the network to learn and 

model complex patterns within the data. The training 

process involves iteratively updating the weights and biases 

using optimization algorithms like stochastic gradient 

descent (SGD) or its variants. During training, the model 

aims to minimize a chosen loss function, which measures 

the discrepancy between predicted and actual values. The 

backpropagation algorithm calculates the gradients of the 

loss function with respect to the network parameters, 

facilitating adjustments to the weights and biases to 

minimize errors, thereby enhancing the model's predictive 

accuracy. The versatility and ability to model non-linear 

relationships make MLPs a popular choice in various fields 

of machine learning and artificial intelligence applications. 

3.2.4 Extra Trees 

The Extra Trees algorithm, short for Extremely 

Randomized Trees, operates as an ensemble learning 

method closely related to Random Forest. It constructs 

multiple decision trees in a randomized and highly diverse 

manner to improve predictive accuracy[25]. Unlike 

Random Forest, Extra Trees not only randomly selects 

subsets of features for each split but also employs random 

thresholds for feature selection, making it an even more 

randomized model. This randomness aims to reduce 

overfitting by introducing greater variability into the 

decision tree creation process. During training, Extra Trees 

builds numerous decision trees from bootstrap samples of 



           

the dataset, utilizing random subsets of features for node 

splitting. The final prediction is derived through 

aggregation, where predictions from individual trees are 

combined either through majority voting (for classification) 

or averaging (for regression). 

The Extra Trees algorithm generates an ensemble of 

decision trees by employing two levels of randomness 

during tree construction. Firstly, it utilizes bootstrapping to 

create multiple subsets of the dataset for each tree. 

Secondly, at each node of the decision tree, instead of 

choosing the best split among the randomly selected 

features, Extra Trees selects a random threshold for feature 

splitting. This increased level of randomness distinguishes 

it from Random Forest, aiming to further diversify the 

trees. By reducing correlation among trees and introducing 

additional randomness in the decision-making process, 

Extra Trees seeks to enhance robustness against 

overfitting, making it an effective choice for handling high-

dimensional datasets and mitigating the impact of noisy or 

irrelevant features in the model. 

3.2.5 SVM 

The Support Vector Machine (SVM) algorithm is a 

powerful supervised learning method primarily used for 

classification tasks, although it can also handle regression 

and outlier detection[26]. SVM operates by finding the 

optimal hyperplane that best separates data points into 

different classes within a high-dimensional space. Its core 

objective is to maximize the margin, representing the 

distance between the hyperplane and the nearest data 

points of each class, known as support vectors. This 

algorithm works well with both linearly separable and non-

linearly separable data by employing a technique called the 

kernel trick, which maps the input data into higher-

dimensional spaces, allowing for more complex decision 

boundaries. Technically, SVM aims to solve the 

optimization problem by identifying the hyperplane that 

maximizes the margin while minimizing classification 

errors, using different kernel functions (such as linear, 

polynomial, or radial basis function) to transform data into 

higher dimensions, making it easier to find a separating 

hyperplane. It is robust against overfitting and handles 

high-dimensional datasets efficiently, making it a widely 

utilized algorithm in various domains, including image 

recognition, text classification, and bioinformatics. 

3.2.6 KNN  

The KNN algorithm operates as a non-parametric and 

instance-based learning method primarily used for 

classification and regression tasks. It determines the class 

membership or predicts the value of a data point by 

examining its neighbors in the feature space[27]. 

Technically, when presented with a new data point, KNN 

identifies the 'K' nearest data points from the training 

dataset based on a chosen distance metric and assigns the 

majority class label (for classification) or calculates the 

average value (for regression) of those neighbors to classify 

or predict the target of the new data point. The choice of 'K', 

the number of nearest neighbors, significantly impacts the 

algorithm's performance and can be adjusted based on the 

dataset characteristics and problem domain. KNN's 

simplicity, intuitive approach, and flexibility make it a 

popular choice, particularly in scenarios where the decision 

boundaries are not easily defined or linear models may not 

be suitable. 

3.2.7 Decision Tree 

Decision Tree algorithm operates as a fundamental 

supervised learning method utilized for both classification 

and regression tasks[28]. It functions by recursively 

partitioning the dataset into subsets, forming a tree-like 

structure where each internal node represents a feature, 

each branch denotes a decision based on that feature, and 

each leaf node presents the final predicted outcome. 

Technically, the tree construction begins by selecting the 

most informative attribute, usually determined by 

measures like information gain (for categorical variables) 

or Gini impurity (for both categorical and continuous 

variables), to split the dataset into subsets based on specific 

threshold values. This process continues until the tree 

reaches predefined stopping criteria, such as reaching a 

maximum depth, minimum samples per leaf node, or when 

no further improvement in the predictive accuracy can be 

achieved. Decision Trees are easily interpretable, capable of 

handling both numerical and categorical data, and can 

capture complex relationships within the dataset. However, 

they are prone to overfitting, especially with deep trees, and 

may not generalize well to unseen data if not appropriately 

pruned or constrained. 

3.2.8 AdaBoost 

AdaBoost, also known as Adaptive Boosting, is an 

ensemble learning method that enhances the performance 

of weak classifiers by prioritizing misclassified instances 

during training[29]. Operating through multiple iterations, 

it sequentially trains weak learners, assigning higher 

weights to misclassified data points in each round. This 

iterative process allows subsequent weak classifiers to focus 



           

on correcting previous errors, ultimately creating a strong 

ensemble classifier. AdaBoost adjusts the weights of 

misclassified samples, directing subsequent models to 

prioritize their correct classification. By combining 

predictions from various weak learners, weighted based on 

their accuracy, AdaBoost generates a robust classifier 

capable of achieving high predictive accuracy. Despite 

potential sensitivity to outliers and longer training times for 

large datasets, AdaBoost's adaptability to different 

classifiers and its effectiveness in addressing challenging 

instances make it a powerful algorithm widely used in 

applications like face detection and text categorization. 

3.2.9 Feedforward Neural Network FNN 

The FNN implemented in Keras represents a 

fundamental artificial neural network architecture used for 

supervised learning tasks such as classification and 

regression[30]. FNN, also known as a multi-layer 

perceptron (MLP), comprises an interconnected 

arrangement of neurons across multiple layers, including 

an input layer, one or more hidden layers, and an output 

layer. In Keras, a high-level deep learning library, FNNs are 

created and trained with ease due to its user-friendly 

interface and abstraction of complex neural network 

operations. Technically, each neuron in an FNN receives 

inputs, applies weights and biases, and passes the 

transformed information through an activation function, 

facilitating non-linear transformations critical for 

capturing complex relationships within the data. Through a 

process called forward propagation, data flows through the 

network from input to output layers, producing predictions 

or classifications. During training, an optimization 

algorithm, often stochastic gradient descent (SGD) or its 

variants, adjusts the network's weights and biases 

iteratively to minimize a defined loss function, aiming to 

improve the model's predictive accuracy. 

3.3 Proposed the ML based Models 

The configuration of various machine learning models 

for liver cirrhosis prediction is outlined here, each tailored 

with specific hyperparameters to optimize performance. 

The Random Forest (RF) Classifier employs 100 decision 

trees, utilizing a random subset of features for splitting at 

each node, with a fixed random state of 42 to ensure 

reproducibility. Gradient Boosting (GB) Classifier 

constructs an ensemble of 100 weak learners, with a 

learning rate of 0.01 controlling the contribution of each 

tree to the final prediction, a maximum depth of 3 to 

prevent overfitting, and a shared random state of 42. The 

Multi-Layer Perceptron (MLP) Classifier, a neural network 

model, comprises a hidden layer of 100 neurons and is 

trained over 1000 iterations, with a consistent random 

state of 42 for reproducibility. 

Additional classifiers include the Extra Trees (ET) 

Classifier, which operates similarly to RF but selects 

random splits at each node without bootstrapping, and the 

Support Vector Machine (SVM) Classifier, utilizing a radial 

basis function kernel ('rbf') for hyperplane separation in a 

high-dimensional space, with a probability estimation 

enabled for outputting class probabilities. The K-Nearest 

Neighbors (KNN) Classifier, with a fixed parameter of 5 

neighbors, determines predictions based on the majority 

class of the nearest data points. Decision Tree (DT) 

Classifier constructs decision trees based on the most 

significant attribute at each node, with a random state of 42 

ensuring consistency. Finally, the AdaBoost (AB) Classifier 

iteratively trains 100 weak learners, often decision trees, on 

weighted versions of the dataset, with weights adjusted to 

emphasize misclassified samples from the previous 

iteration, maintaining a consistent random state for 

reproducibility. 

These configurations ensure a comprehensive 

exploration of machine learning techniques for liver 

cirrhosis prediction, spanning from ensemble methods like 

Random Forest and Gradient Boosting to neural network 

approaches like Multi-Layer Perceptron, each fine-tuned 

with specific hyperparameters to optimize performance. 

With fixed random states ensuring reproducibility and 

carefully chosen parameters aiming at balancing model 

complexity and generalization, these classifiers represent a 

robust framework for predictive modeling in liver disease 

diagnosis and management. 

4. Results and Discussions 
In this section, the experimental results are unveiled, 

providing a detailed insight into the performance of the 

implemented model. The evaluation details highlight the 

methodology used to assess the model's effectiveness, 

encompassing metrics, datasets, and experimental 

conditions. Through a rigorous examination of these results 

and performance evaluations, a comprehensive 

understanding of the model's capabilities and limitations is 

presented. 

4.1 Precision-Recall Curve (PRC) Metrix 

In this study, the evaluation of machine learning 

models relies on a metric known as the Precision-Recall 

Curve (PRC). This metric holds particular significance in 

scenarios where class imbalances are prevalent[31]. It 



           

offers a comprehensive perspective on a model's efficacy by 

taking into account both precision and recall. Precision 

measures the accuracy of positive predictions made by the 

model, while recall assesses its ability to capture all relevant 

instances within the dataset. By graphing precision and 

recall values against various classification thresholds, the 

PRC illustrates the delicate balance between these metrics, 

providing nuanced insights into the model's performance 

across different decision boundaries. This method allows 

for a thorough assessment of the machine learning 

algorithm, revealing its strengths and weaknesses in 

handling specific datasets and tasks. Fig 1 presents the 

results of the PRC metrics for the ML models.

  

(a) (b) 

 
 

(c) (d) 
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(g) (h) 
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Fig 1: The results of the PRC metrics for the ML models 



           

Fig 1(a) illustrates for the AdaBoost model for Liver 

Cirrhosis prediction. The curve starts with high precision 

but low recall. As we move along the curve, there is a sharp 

decline in precision as recall increases slightly. The curve 

then flattens out and runs parallel to the x-axis (recall), 

indicating that further increases in recall do not 

significantly impact precision; both remain constant at low 

levels. This plateauing effect implies that beyond an initial 

threshold, increasing the number of true positives does not 

lead to a proportionate increase in false positives. 

As shown in Fig 2(b), the PRC presents the Decision 

Tree model in liver cirrhosis prediction. the graph plots the 

precision. The Decision Tree model has high precision but 

low recall, as indicated by the green line being at the top left 

corner of the plot. This suggests that while the model is 

highly accurate in its predictions, it may be missing out on 

identifying several true positive cases, leading to low recall. 

Such insights can guide researchers and practitioners in 

refining their models for better performance. 

The provided analysis of the performance of the Extra 

Trees model is in Fig 3(c), illustrating its characteristics 

through Precision-Recall Curve assessment. The plot 

depicts the model's behavior, showcasing high precision 

and low recall, evident by the green line positioned at the 

top left corner. This signifies the model's strong accuracy in 

making correct predictions, yet it might overlook several 

true positive cases, resulting in lower recall rates. These 

findings offer valuable insights to researchers and 

practitioners, guiding them towards potential 

improvements in model refinement to achieve a more 

balanced performance. 

The curve starts with high precision at low recall 4(d), 

indicating that the model is confident in its positive 

predictions but is not capturing all positive cases. As recall 

increases, precision drops significantly, suggesting that the 

model begins to make more false positive errors as it tries 

to capture more true positives. This trend underscores the 

trade-off between precision and recall in the model's 

performance. Initially, at lower recall levels, the model 

showcases high precision, indicating accurate identification 

of positive cases. However, as the model aims to encompass 

more positive instances by increasing recall, it encounters a 

substantial decline in precision, signifying an increase in 

false positive predictions. This observation elucidates the 

challenge of maintaining high precision while striving for 

higher recall rates, emphasizing the need for a balanced 

approach in model optimization for optimal performance. 

The PRC for Gradient Boosting is presented in Fig 5(e). 

In the context of this graph, precision is the ratio of 

correctly predicted positive observations to the total 

predicted positives, while recall (also known as Sensitivity) 

is the ratio of correctly predicted positive observations to all 

actual positives. The curve starts with high precision at low 

recall values. This indicates that initially, Gradient Boosting 

has a high true positive rate compared to false positives but 

covers fewer actual positive cases. As recall increases, 

precision drops significantly after approximately 0.2 recall 

value and then again after approximately 0.6 recall value. 

This suggests that as the algorithm tries to cover more 

actual positive cases, it starts making more mistakes by 

classifying negative cases as positive. 

The PRC for a KNN algorithm is in Fig 6(f). the curve 

starts with high precision at low recall values. This indicates 

that initially, KNN has a high true positive rate compared 

to false positives but covers fewer actual positive cases. As 

recall increases, precision drops significantly after 

approximately 0.2 recall value and then again after 

approximately 0.6 recall value. This suggests that as the 

algorithm tries to cover more actual positive cases, it starts 

making more mistakes by classifying negative cases as 

positive. 

Fig 1(g) presents the result MLP model. The curve 

starts with a high precision at low recall values, indicating 

that initially, the model is very accurate but only identifies 

a small portion of all positive cases. As recall increases, 

precision drops significantly, suggesting that as the model 

tries to identify more positive cases, it starts making more 

mistakes by classifying negative cases as positive. The sharp 

decline in precision at low levels of recall indicates that the 

MLP model may not be well-calibrated or might be 

suffering from class imbalance issues. It’s performing well 

when being conservative (low recall), but its performance 

degrades quickly as it tries to increase its coverage. This 

could imply a need for further tuning or consideration of 

different algorithms to improve overall performance. 

In this graph 8(h), precision is the ratio of true positive 

predictions to the total number of positive predictions 

made, while recall is the ratio of true positive predictions to 

the total number of actual positives. The curve in this graph 

helps in understanding how well the Random Forest model 

is performing in terms of these two metrics. 

4.2 ROC Curve 

This study also adopts the Receiver Operating 

Characteristic (ROC) curve as a key metric for assessing the 

performance of the machine learning model. The ROC 

curve is a widely-used tool in binary classification tasks, 

depicting the trade-off between sensitivity and specificity 

across different decision thresholds. By plotting the true 

positive rate against the false positive rate, the ROC curve 



           

provides a visual representation of the model's 

discrimination ability. 
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Fig 2: The results of the ROC curves for the ML models 

The shown in Fig 2(a), it is the ROC curve for the 

AdaBoost model. ROC curves are a graphical plot that 

illustrates the diagnostic ability of a binary classifier system 

as its discrimination threshold is varied. In this graph, the 

True Positive Rate (Sensitivity) is plotted against the False 

Positive Rate (1-Specificity). The orange line represents the 

ROC curve of the AdaBoost model, while the blue dashed 

line represents the line of no-discrimination. The Area 

Under Curve (AUC) value is 0.72 as indicated in the image, 

which means that there’s a 72% chance that the model will 

be able to distinguish between positive class and negative 

class. This AUC value suggests that this AdaBoost model 

has good classification performance - it’s significantly 

better than random guessing but not perfect. The ideal AUC 

value is 1; however, achieving such perfection isn’t 

common. 

In this graph 2(b), the attached diagram represents the 

ROC curve delineating the performance of a decision tree 

model. ROC curves serve as graphical representations 

illustrating the diagnostic capacity of a binary classifier 

system while varying discrimination thresholds. 

Specifically, within this graph, the True Positive Rate 

(Sensitivity) is plotted against the False Positive Rate (1-

Specificity), encapsulating the model's performance across 

different threshold settings. The curve depicted in this 

graph becomes instrumental in comprehending the 

decision tree model's effectiveness concerning these 

fundamental evaluation metrics.  

The ROC curve for the decision tree model is almost a 

straight line with the value of 0.49, indicating that the 

decision tree model’s performance is nearly random. The 

AUC value suggests that this decision tree model has poor 

classification performance. The ideal AUC value is 1; 

however, achieving such perfection isn’t common. 

Analyzing this ROC curve can be crucial for determining 

how well the model will perform on unseen data and 

particularly useful when classes are imbalanced. By 

examining different points on this curve, one can decide to 

adjust the threshold for classification to achieve desired 

levels of precision and recall based on specific business or 

application needs. It is important to note that the optimal 

classifier for a given task will depend on the specific 

requirements of that task. Therefore, it is important to 

carefully evaluate the performance of different classifiers 

and choose the one that best meets the requirements of the 

task at hand. 

The graph in Fig 2(c) is the ROC curve for the Extra 

Trees model. ROC curves are a graphical plot that 

illustrates the diagnostic ability of a binary classifier system 

as its discrimination threshold is varied. The AUC value 

associated with this ROC curve is 0.78, indicating a 

reasonably good performance of the model in 

distinguishing between the positive and negative classes. 

An AUC of 0.78 suggests that there is a 78% chance that the 

model will be able to distinguish between a randomly 

selected positive instance and a randomly selected negative 

instance. 

Fig 2 (d) represents ROC curve for the FNN model, 

illustrating the diagnostic capability of this binary classifier 

system as it adjusts discrimination thresholds. Plotted as 

True Positive Rate against False Positive Rate, the orange 

curve represents the FNN's performance, while the blue 

dashed line signifies an ideal scenario. A closer alignment 

of the ROC curve to this ideal line or the top left corner of 

the plot signifies better model performance with an AUC of 

0.69. Analyzing this curve proves pivotal in predicting the 

model's performance on new data, especially in imbalanced 

class scenarios, aiding in precision and recall adjustments 

based on specific business or application needs.  

In this Fig 2(e) is a graphical representation of the 

ROC curve for Gradient Boosting. The ROC curve is a 

graphical plot that illustrates the diagnostic ability of a 

binary classifier system as its discrimination threshold is 

varied. The orange line represents the ROC curve, and it has 



           

an AUC value of 0.85, indicating good model performance. 

A dashed blue line represents the line of no discrimination, 

serving as a baseline to compare the model’s performance. 

In the Fig 2(f), the ROC curve is plotted for a binary 

classification model. The ROC curve is a graphical 

representation of the true positive rate against the false 

positive rate for different thresholds of a classification 

model. The orange line represents the ROC curve, and it has 

an AUC value of 0.85, indicating good model performance. 

The blue dashed line represents the line of no 

discrimination, serving as a baseline to compare the 

model’s performance. The ROC curve for this model shows 

that as the false positive rate increases, so does the true 

positive rate. An AUC of 0.85 suggests that there is an 85% 

chance that the model will be able to distinguish between a 

randomly selected positive instance and a randomly 

selected negative instance. 

The attached 7(g) is the ROC curve for the FNN model. 

ROC curves are a graphical plot that illustrates the 

diagnostic ability of a binary classifier system as its 

discrimination threshold is varied. The ROC curve is 

represented by an orange line that zigzag across the graph, 

while a blue dashed line represents the line of no-

discrimination. The AUC value is 0.69, indicating moderate 

accuracy in prediction capabilities. 

The attached 8(h) graph is the ROC curve for a binary 

classification model. The ROC curve is a graphical 

representation of the true positive rate against the false 

positive rate for different thresholds of a classification 

model. The orange line represents the ROC curve, while the 

blue dashed line represents the line of no-discrimination. 

The AUC value associated with this ROC curve is 0.86, 

indicating good model performance 1 

Analyzing this ROC curve can be crucial for 

determining how well the model will perform on unseen 

data and particularly useful when classes are imbalanced. 

By examining different points on this curve, one can decide 

to adjust the threshold for classification to achieve desired 

levels of precision and recall based on specific business or 

application needs. It is important to note that the optimal 

classifier for a given task will depend on the specific 

requirements of that task. Therefore, it is important to 

carefully evaluate the performance of different classifiers 

and choose the one that best meets the requirements of the 

task at hand. 

4.3 Model Comparison 

For the purpose of model comparison, this study 

employs a bar chart to visually represent and compare the 

performance of different models. The bar chart succinctly 

illustrates key performance metrics, offering a clear and 

accessible means to evaluate and contrast the results. 

Performance metrics using the precision, recall, and F1 

score are presented alongside the visual representation, 

providing a comprehensive assessment of each model's 

strengths and weaknesses. This approach facilitates a 

straightforward and insightful comparison, aiding in the 

identification of the most effective model for the given task 

or dataset. Fig 3 demonstrates the performance 

comparison of the models. 

 
Fig 3: Performance comparison of the models 



           

As shown in Fig 3, it presents result of performance 

metrics for the nine machine learning algorithms based on 

Precision, Recall, and F1-score. The examined algorithms 

encompass a range of models such as Random Forest, 

Gradient Boosting, MLP, Extra Trees, SVM, KNN, Decision 

Tree, AdaBoost, and FNN. Each model's evaluation is 

represented through bars in three colors: blue for Precision, 

orange for Recall, and green for F1-score. The SVM model 

displays superior precision compared to others but shows 

comparable recall and F1-score to Random Forest and 

Gradient Boosting. Meanwhile, the MLP model exhibits 

lower performance across all metrics. The Extra Trees 

model demonstrates a balanced yet non-dominant 

performance across the criteria. Decision Tree exhibits 

higher recall but lower precision, resulting in a moderate 

F1-score. AdaBoost and KNN exhibit similar patterns in 

performance metrics. The paragraph also suggests 

potential avenues for enhancing these models' 

performance, such as hyperparameter tuning, employing 

more complex models, feature engineering to capture 

nonlinear patterns in the data, and evaluating the 

sufficiency of available data or the inclusion of additional 

relevant features for improved model learning. Overall, this 

analysis aims to provide insights into the strengths and 

weaknesses of various machine learning algorithms. 

5. Conclusion 
This study presents addressing the challenge of 

achieving high accuracy rates in liver cirrhosis prediction 

through machine learning methodologies. By leveraging 

the popular performance evaluation measurements 

involving the PRC and ROC metrics, the proposed method 

offers a comprehensive evaluation of model performance, 

particularly in scenarios with imbalanced classes. The study 

meticulously crafts, trains, validates, and tests various 

machine learning-based models tailored specifically for 

liver cirrhosis prediction, aiming to bridge the existing 

research gap and propel advancements in predictive 

methodologies. Through the PRC metric, precision and 

recall are effectively measured, providing nuanced insights 

into the models' capabilities and limitations across 

different decision boundaries. 

The research findings underscore the effectiveness of 

the proposed methodology in accurately predicting liver 

cirrhosis. By considering both precision and recall, the 

models' performance is thoroughly evaluated, shedding 

light on their strengths and weaknesses. The Precision-

Recall Curve facilitates a detailed examination of the trade-

off between precision and recall, offering valuable insights 

into the models' efficacy in capturing relevant instances 

within the dataset. This approach not only enhances the 

understanding of machine learning algorithms' 

performance but also contributes to the early detection and 

management of liver cirrhosis, ultimately improving 

patient outcomes and healthcare standards. 

However, the study acknowledges several limitations 

that warrant further investigation. These include the small 

sample size and the lack of external validation of the 

models. Future research directions should focus on 

validating the proposed methods on larger datasets and 

comparing their performance against other machine 

learning algorithms. Additionally, exploring strategies to 

overcome imbalanced class scenarios and enhancing the 

interpretability of the models could further advance the 

field of liver cirrhosis prediction. By addressing these 

limitations and exploring new avenues, future studies can 

contribute to refining predictive methodologies and 

ultimately improving the diagnosis and management of 

liver cirrhosis. 
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