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Highlights 
 

➢ Enhanced ANFIS for chaotic time series forecasting. 

➢ Incorporates self-feedback relationships for dynamic systems. 

➢ Utilizes hybrid ICA-LSE approach for training. 

➢ Outperforms previous methods in prediction accuracy. 
 

Article Info  Abstract 

Predicting time series, especially those originating from chaotic and nonlinear dynamic systems, is 
a critical research area with broad applications across various fields. Neural networks and fuzzy 
systems have emerged as leading methods for forecasting chaotic time series. This study introduces 
an improved adaptive neural-fuzzy inference system (ANFIS) specifically tailored for forecasting 
chaotic time series. Unlike traditional ANFIS models, which are primarily designed for static 
problems, this enhanced version incorporates self-feedback relationships from previous outputs to 
capture the time dependencies inherent in dynamic systems. Additionally, a hybrid approach 
combining the Imperialist Competitive Optimization Algorithm (ICA) and Least Squares 
Estimation (LSE) is employed to train the neural-fuzzy system and update its parameters. This 
method circumvents challenges associated with training gradient-based algorithms. The proposed 
technique is applied to predict and model multiple nonlinear and chaotic time series from real-
world scenarios. Comparative analyses with recent works demonstrate the superior performance of 
the proposed method, particularly in terms of the prediction total error criterion for time series 
modeling and forecasting. These results highlight the effectiveness of incorporating self-feedback 
relationships and utilizing the CCA-LSE hybrid approach in enhancing the predictive capabilities 
of adaptive neural-fuzzy inference systems for chaotic time series. 
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1. Introduction 
Most of the phenomena of mechanical systems can be 

modeled using appropriate differential equations, which 

need to be solved in order to study their behavior[1], [2], 

[3], [4], [5], [6]. Time series forecasting holds a prominent 

position among forecasting disciplines, involving the 

collection and analysis of past observations of a variable to 

establish key relationships and formulate a descriptive 

model[7], [8], [9]. Then, the resulting model has been used 

to extrapolate time series in the future. Forecasting time 

 
* Corresponding Author: Honglei Yao 
Email: yaohonglei@zoho.com.cn 
 

 

series is an essential topic with broad applications in 

science, engineering, medicine, economics, etc. In general, 

a time series has properties such as non-linearity, chaos, 

non-stationarity, and periodicity, such as seasonality[10], 

[11], [12]. Between the different kinds of time series, chaotic 

data is usually found in natural occurrences. Predicting the 

chaotic time series of dynamic systems is a novel 

examination topic that has attracted the attention and 

efforts of many scientists[13], [14], [15].  
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Neural networks [16], [17], [18] especially fuzzy neural 

networks (FNNs) are one of the proposed structures for 

predicting time series[19]. Among these networks, the 

ANFIS adaptive neural-fuzzy inference system is an 

adaptive neural network based on fuzzy inference, which is 

trained by optimizing the parameters of the front part. 

There is an inherent problem in the adaptive neuro-fuzzy 

inference system[20]. This problem is driven by its 

progressive nature, which limits its ability to model static 

problems. Because of this, it cannot be used successfully in 

dynamic problems such as time series forecasting. In the 

field of time series, many statistical and classical methods 

have been presented. However, these methods are often 

complicated and perform poorly in the face of large and 

chaotic data[21]. In recent years, investigators have used 

many forecasting approaches such as the wavelet 

method[22], neural networks[23], [24], fuzzy systems[25], 

neuro-fuzzy[26], and evolutionary algorithms [27] have 

emerged. In recent years, many works related to recurrent 

neural networks have been presented to solve these 

problems with the dynamics of absorbing and storing 

information[28]. However, the training of recurrent neural 

network, due to its complex network structure, is more 

difficult and requires more calculations compared to 

forward networks. In addition, it has been proven that in 

the structure of progressive networks, the efficiency of fuzzy 

neural networks is better than that of neural networks[29]. 

To overwhelmed this structural problem in feed-forward 

neural-fuzzy networks, researchers tried to build recurrent 

neural-fuzzy networks with the formation of internal 

feedback and time delay and used them to control, identify, 

and predict systems[30]. Previously, similar works and 

research have been carried out for prediction and 

identification using wavelet-based recurrent fuzzy neural 

network (WRFNN)[31], as well as a self-feedback adaptive 

neuro-fuzzy inference system with a local batch search 

algorithm[32].  

In recent years, predicting chaotic and nonlinear time 

series data has emerged as a critical research area with 

widespread applications across various fields, including 

finance, environmental science, and engineering. However, 

the inherent complexities of dynamic systems pose 

significant challenges to accurate forecasting, necessitating 

the development of more sophisticated modeling 

techniques. Traditional forecasting methods, such as linear 

regression or autoregressive models, often struggle to 

capture the intricate dynamics and nonlinear behaviors 

exhibited by chaotic time series data. Consequently, there 

exists a pressing need for advanced forecasting 

methodologies capable of effectively handling the 

complexities of dynamic time series data. In this context, 

this study introduces an enhanced adaptive neural-fuzzy 

inference system (ANFIS) tailored specifically for 

forecasting chaotic time series data. By addressing the 

limitations of traditional ANFIS models and leveraging 

self-feedback mechanisms, this novel approach aims to 

enhance the predictive capabilities of ANFIS in capturing 

the complex temporal dependencies inherent in dynamic 

systems. Through this research, we seek to contribute to the 

advancement of time series prediction methodologies and 

address the pressing need for more effective forecasting 

techniques in the domain of chaotic and nonlinear time 

series analysis. 

 The study proposes a method to enhance the Adaptive 

Neural-Fuzzy Inference System (ANFIS) for dynamic 

problems, addressing its inherent limitations. A self-

feedback mechanism is introduced to overcome memory 

limitations and establish temporal relationships between 

inputs and outputs. The method integrates Independent 

Component Analysis (ICA) and Least Squares Estimation 

(LSE) for parameter adaptation, offering advantages over 

gradient-based methods. By combining learning 

techniques and self-feedback, the proposed approach 

improves ANFIS performance in time series forecasting. 

Simulation results on chaotic time series datasets (Mackey-

Glass, Sunspot Number) demonstrate effectiveness 

compared to established methods, evaluated using 

Haykin's criteria for forecasting accuracy. This novel 

approach represents a significant advancement in ANFIS 

application for dynamic systems forecasting. The 

innovation lies in the combination of a self-feedback 

mechanism with Independent Component Analysis (ICA) 

and Least Squares Estimation (LSE) to enhance the 

Adaptive Neural-Fuzzy Inference System (ANFIS) for time 

series forecasting. This integration allows for overcoming 

inherent limitations of ANFIS, such as memory constraints 

and difficulties in parameter adaptation. 

2. Basic concepts 
2.1. Imperialist competitive algorithm (ICA) 

ICA is a new evolutionary search procedure based on 

socio-political evolution. Considering the phenomenon of 

colonization as an inseparable part of the course of human 

historical evolution, this algorithm is used as a source of 

inspiration to create an efficient and new algorithm in the 

field of evolutionary calculations. Figure (1) illustrates the 

steps of the ICA method.  

Comparable to other evolutionary procedures, ICA 

starts with a random initial population and an objective 

function that is calculated for all of them. The strongest 

countries are chosen as the colonizers, and the weaker 

countries are selected as the colonies of these colonizers. 



           

Then, there was competition between the colonists to get 

more colonies. The best colonizer has more chances to have 

more colonies. Then, each colonizer forms an empire with 

his colonies. Figure 1 shows the different steps of the ICA 

algorithm. More details of this optimization algorithm are 

provided in the reference. 

 
Fig 1 Overview of the Imperialist competitive algorithm [33] 

2.2. Adaptive neural-fuzzy inference system 
(ANFIS) 

Both neural networks and fuzzy structures [33] exhibit 

inherent capabilities to manage uncertainty and noise. 

Adaptive fuzzy-neural networks, akin to fuzzy systems, are 

structured into two components. The initial part constitutes 

the front section, while the subsequent part forms the tail 

section, interconnected in a network format through rules. 

Figure 2 illustrates the configuration of a type III of ANFIS 

with two inputs. The system's architecture encompasses a 

total of 5 layers [34]. Type III ANFIS is a variation of the 

ANFIS architecture that incorporates additional layers and 

functionality compared to the original Type I and Type II 

ANFIS models. In Type III ANFIS, the structure typically 

involves more complex neural network architectures, 

potentially including recurrent neural networks (RNNs) or 

other forms of feedback connections. These additional 

layers and connections allow for more sophisticated 

modeling of temporal dependencies and dynamic behaviors 

in time series data.



           

 
Fig. 2 The configuration of a type III of ANFIS featuring two inputs and a single output [34] 

The 1st layer implements the fuzzification process. In 

this layer, each node shows a membership function, which 

is the learnable parameter of the front part. In the second 

layer, each firing strength is calculated. In the third layer, 

the firepower of each rule is normalized according to the 

firepower of other laws. In the fourth layer, the output of 

each rule is obtained, and finally, the last layer calculates 

the output of the fuzzy system by adding the outputs of the 

fourth layer. 

Figure 2 shows two labels for each input. According to 

Type III, the rules are as a: 
𝑤𝑖 = 𝜇𝐴𝑖(𝑥) + 𝜇𝐵𝑖(𝑥), 𝑖 = 1,2 (1) 

𝑤̄𝑖 =
𝑤1

𝑤1 + 𝑤2

, 𝑖 = 1,2 (2) 

𝑓1 = 𝑏1𝑦 + 𝑎1𝑥 + 𝑐1 

𝑓2 = 𝑏2𝑦 + 𝑎2𝑥 + 𝑐2 

(3) 

𝑓 =
𝑤1𝑓1 + 𝑤2𝑓2
𝑤1 + 𝑤2𝑓

= 𝑤̄1𝑓1 + 𝑤̄2𝑓 
(4) 

The adaptive neural-fuzzy inference system exhibits a 

noteworthy capability in approximation, relying on its 

proficiency in partitioning the input space through the 

determination of membership functions in the front section 

for each input. In this context, Gaussian membership 

functions are employed. The definition of these functions is 

as follows: 

𝜇𝐴𝑖(𝑥) = 𝑒𝑥𝑝 (−
1

2
[
𝑥 − 𝑚𝑖

𝜎𝑖
]) 

(5) 

2.2.1. Self-feedback ANFIS 

 In the Self-feedback ANFIS model, the dynamic 

characteristic originates from the feedback loop involving 

the system's own output in preceding steps. This feedback 

mechanism enables the system to preserve a memory of its 

previous states, incorporating information from both prior 

and current states to calculate new values. From a scientific 

perspective, this embedded time delay shares similarities 

with self-feedback, leading to varied dynamic behaviors. 

These behaviors are instrumental in augmenting the 

system's ability to provide predictions with greater 

precision and accuracy. 

To tackle challenges inherent in dynamic problems 

related to the adaptive neural-fuzzy inference system, a 

solution involves reintroducing the output of the 

progressive network to the system's inputs, as illustrated in 

Figure 3. Utilizing output feedback from previous stages, 

the output at the moment "t" is defined as a function that 

incorporates both the current and preceding inputs and 

outputs, expressed through the following relationship[35]: 

𝑦(𝑡) = 𝑓[𝑅(𝑡 − 1), . . . , 𝑅(𝑡 − 𝑀), 𝑅(𝑡 − 1)] (6) 

where (R (t -1),...,R (t - M) remain direct inputs and y(t 

-1),..., y(t - N) stand feedback inputs given from the output 

at different times.



           

 
Fig. 3 Structure of the ANFIS with output feedback 

2.2.2. Training neural-fuzzy inference system 

Following the creation of the ANFIS, techniques for 

training its parameters were introduced. For example, in 

Ref.[36], the integration method of the Min-Max and 

ANFIS model is proposed to determine the neural-fuzzy 

network and determine the set of optimal rules of the fuzzy 

system. Jang and Mizutani [37] proposed an application of 

the Levenberg–Marquardt method, which is basically a 

nonlinear least square method. In another article, Jang 

[38] presented a scheme for input selection to learn the 

adaptive neural-fuzzy inference system. In Ref.[39], Jang 

presented four methods for updating system parameters: 1) 

gradient descent: all parameters are trained with the help 

of gradient descent; 2) gradient descent and a LSE step are 

used in the first step to initialize the parameters of the next 

section; 3) gradient descent and LSE; 4) Sequential LSE: 

This method linearizes all the parameters and uses the 

developed Kalman filter algorithm to update the 

parameters. The methods proposed so far depend on the 

gradient and are still applied due to their suitable 

performance. The methods that depended on the least 

squares are effective methods for optimizing the 

parameters. Training is heavily reliant on the parameters of 

the front part, and conventional methods are deemed 

unsuitable due to the intricate nature of gradient 

calculations and the nonlinear involvement of front 

parameters in the output. Population-based approaches, 

such as genetic algorithms, group optimization of particles, 

ant colonies, and other related methods, are proposed to 

solve this problem. Many works for training neural-fuzzy 

networks with a combination of gradient descent, 

evolutionary algorithms and least square, and Kalman filter 

algorithm methods have been proposed.  

In this work, a method is presented for training the 

constraints of the ANFIS, which has less complexity and 

more accurateness, and in which the training of the 

parameters of the front part and the tail part is performed 

as an iterative procedure with the evolutionary algorithm of 

ICA and LSE. The next section presents the enhanced 

adaptive neural-fuzzy inference system for prediction. 

3. Proposed method 

 In this section, the algorithm of the proposed method 

for forecasting time series is described step by step.  

First step: Reconstruction of the state space of 

chaotic time series. In order to study the geometric and 

dynamic properties of a certain system, the state space 

description is utilized. One of the most fundamental steps 

in the analysis of time series resulting from a nonlinear 

process is the reconstruction of the state space with limited 

dimensions using these series so that it is equivalent to the 

state space of the data-generating process. With the 

inference theory, the problem of state space reconstruction 

from time series is solved. In essence, the points on the 

absorber of the system exhibit a one-to-one 

correspondence with measurements taken of the system's 

dynamic variables. Additionally, these points encapsulate 

comprehensive information about the current state of the 

system. The one-to-one relationship implies that the phase 

space states are precisely associated with the 

measurements. Consequently, the quest is for a mapping 

from the system absorber to the reconstructed space, 

ensuring that this mapping is both one-to-one and 

preserves the vital information of the system. This 

conceptual definition underscores the importance of a 

mapping that accurately captures and retains the system's 

information. By applying Tokens theory in reconstructing 

the state space from a chaotic time series, the system's state 

space is reconstructed with the help of two parameters, the 

inference dimension D and the delay time ԏ. If the time 

series is in the form [q(1), q(2),..., q(N)], an embedded 

phase vector u(i) is as follows: 

𝑢(𝑖) = [𝑞(𝑖), 𝑞(𝑖 − 𝜏), . . . , 𝑞(𝑖 − (𝐷 − 1)𝜏)] (7) 



           

where D remains the inference dimension, τ stays the 

time delay, and u(i) is the D-dimensional phase space. 

Hence, the input matrix is defined as Eq. (8). 

𝑈

= [

𝑞(𝑖) 𝑞(𝑖 + 1) ⋯ 𝑞(𝑖 + 𝑛)

𝑞(𝑖 − 𝜏) 𝑞(𝑖 + 1 − 𝜏) ⋯ 𝑞(𝑖 + 𝑛 − 𝜏)
⋮ ⋮ ⋱ ⋮

𝑞(𝑖 − (𝐷 − 1)𝜏) 𝑞(𝑖 + 1 − (𝐷 − 1)𝜏) ⋯ 𝑞(𝑖 + 𝑛 − (𝐷 − 1)𝜏)

] 

(8) 

where i is an integer and k is the expected number of 

steps. To extract the behavior of the time series in an 

efficient way, the optimal values of D and τ must be 

determined. For the time series tested in this article, these 

values were determined by utilizing the average mutual 

information methods [40] and false nearest neighbor 

(FNN) counting. 

Second step: receiving the time series matrix as a 

direct input, and the feedback output from the previous 

steps as a feedback input to the structure of the adaptive 

neural-fuzzy inference system. The direct input to the 

structure of the improved ANFIS is a matrix with an 

embedded phase vector as a column and a chaotic time 

series as a row. The direct entry of the matrix is as follows: 

𝑈 = [𝑢𝑇(𝑖), 𝑢𝑇(𝑖 + 1), . . . , 𝑢𝑇(𝑖 + 𝑚)]𝑇  (9) 

The dimensions of the direct input matrix are (m × 1) 

× D, and i and k are the number of predicted steps. 

The feedback input at time t of order M is as follows: 

𝑌(𝑖) = [𝑦(𝑡 − 1), 𝑦(𝑡 − 2), . . . , 𝑦(𝑡 − 𝑁)] (10) 

The dimensions of the feedback input matrix are 

(m+1)×N. 

 Third Step: Training the Improved Adaptive 

Neural-Fuzzy Inference System 

The third step involves training the enhanced adaptive 

neural-fuzzy inference system using output feedback from 

the preceding step. This iterative process utilizes a hybrid 

algorithm combining the Imperialist Competitive 

Algorithm (ICA) and LSE. The objective is to iteratively 

refine the parameters of the system's front end, thereby 

enhancing prediction accuracy. The training process halts 

upon reaching the desired number of steps or achieving the 

target training error.[41] 

In this procedure, the outputs of each stage "M" and 

their corresponding outputs from the previous stage serve 

as feedback inputs to the ANFIS. The training data, 

verification data, the specified number of training steps, 

and the type of membership functions for the fuzzy 

inference system are considered in determining optimal 

values for the front part parameters at each step using ICA. 

Subsequently, the parameters of the result part of the 

adaptive neural-fuzzy inference system are refined through 

LSE.  

 

4. Experiments 

In order to evaluate the suggested technique, 

comprehensive tests and simulations were conducted with 

the self-feedback ANFIS trained with the proposed learning 

algorithm. In all cases, 50% of the dataset is used for 

training, 20% for checking, and 30% for testing the model 

using the MATLAB software. The following criteria are 

employed to evaluate the numerical accuracy of the 

prediction. 

𝑅𝑀𝑆𝐸 = √
∑ (𝑃𝑖 − 𝑂𝑖)
𝑁
𝑖=1

𝑁
 

(11) 

𝐸𝐹 = 1 −
∑ (𝑃𝑖 − 𝑂𝑖)

2𝑁
𝑖=1

∑ (𝑂𝑖 − 𝑂̄)2𝑁
𝑖=1

 
(12) 

𝑉𝐸 = 1 −
∑ (|

𝑃𝑖 − 𝑂𝑖

𝑂𝑖
|)𝑁

𝑖=1

𝑁
× 100 

(13) 

𝑅2 = 1 −
∑ [(𝑃𝑖 − 𝑃̄)(𝑃𝑖 − 𝑂̄)]2𝑁
𝑖=1

∑ (𝑃𝑖 − 𝑃̄)2𝑁
𝑖=1 ∑ (𝑂𝑖 − 𝑂̄)2𝑁

𝑖=1

 
(14) 

where RMSE is the root mean square error, EF is the 

efficiency of the model, VE is the volumetric error (%), R is 

the explanatory factor, Pi is the predicted values by the 

model, Oi is the observed values, N is the number of data, P 

is the average predicted values by the model, and O is the 

average observed values. Therefore, any model with lower 

values than RMSE and VE values, and EF (the range of 

negative changes from infinity to one) and R closer to one 

will be more accurate than other models. 

In evaluating the performance of the proposed 

method, several key considerations were taken into account 

to ensure a comprehensive and rigorous assessment. 

Performance metrics such as prediction total error criterion 

were employed to quantitatively measure the accuracy and 

effectiveness of the proposed method in forecasting chaotic 

time series data. The evaluation utilized multiple datasets, 

including real-world scenarios, to assess the robustness 

and generalizability of the proposed approach across 

different domains and data characteristics. Comparative 

analyses were conducted with recent works to benchmark 

the performance of the proposed method against 

established forecasting techniques, utilizing metrics such 

as forecasting accuracy and error rates. It's important to 

note that while the chosen evaluation methodology 

provides valuable insights into the performance of the 

proposed method, there may be inherent limitations and 

considerations to be aware of, such as dataset 

characteristics, model assumptions, and experimental 

conditions. Despite these considerations, the evaluation 

approach employed in this study aims to provide a 

transparent and comprehensive assessment of 

performance, contributing to the credibility and relevance 

of the research findings. 



           

Firstly, data from each modality were collected and 

preprocessed individually to ensure consistency and 

compatibility. Preprocessing steps included data cleaning, 

normalization, and feature extraction, tailored to the 

characteristics of each modality. Subsequently, the 

preprocessed data were merged to create a unified dataset, 

utilizing appropriate techniques such as concatenation or 

feature fusion. Special consideration was given to ensure 

that the integrated dataset preserved the essential 

information from each modality while minimizing 

redundancy and maintaining data integrity. Furthermore, 

the rationale behind the chosen integration approach and 

any challenges encountered during the process are 

discussed to provide transparency and insight into the data 

integration methodology. 

4.1.Mackey-Glass equation 

The Mackey-Glass time series is provided with the 

time delay differential Eq. (15) and a model for the 

production of white blood cells. The mathematical form of 

this series is demonstrated in the following relation. 
𝑑𝑥

𝑑𝑡
=

𝛼𝑥(𝑡 − 𝜆)

1 + 𝑥10(𝑡 − 𝜆)
− 0.1𝑥(𝑡) 

(15) 

This time series is susceptible to initial conditions, and 

its behavior is chaotic for λ ≥16.8 and has no clearly defined 

period. This time series has been used in many neural and 

fuzzy network modeling research studies. Figure 5 shows 

the response of this system for some different conditions. 

The standard values for reconstructing the state space of 

this time series are obtained by mutual information average 

and FNN methods. Therefore, the phase space of this series 

is reconstructed as x(t-16), x(t-14), x(t-8), x(t) to predict x(t-

8) (eight steps ahead prediction). The dataset is partitioned 

into three subsets: 60% for training, 30% for validation, 

and 10% for testing. This division allows for effective 

training of the model on the majority of the data, while also 

enabling validation to ensure that the model generalizes 

well to unseen data. The testing subset serves as an 

independent evaluation set to assess the performance of the 

trained model on completely new data, providing an 

unbiased estimate of its effectiveness. This approach helps 

prevent overfitting and ensures that the model's 

performance is robust and reliable across different 

datasets.

 
Fig. 5 Mackey-Glass time series response for different τ parameter 

The suggested approach for predicting this time series 

is trained with the parameters mentioned in Table (1). The 

convergence and error reduction diagram of the suggested 

method is shown in Figure (6). The real and predicted 

values of the test time series are given in Figure (7), and the 

prediction error diagram is in Figure (8).

Table1. Parameters of the proposed method 

Value Parameter 

2 Number of feedback inputs (N) 

40 Clusters 



           

50 Countries 

10 Empires 

200 Steps 

2 α 

1 β 

0.2 Possibility of revolution 

0.03 μ 

0.02 ξ 

 
Fig. 6 Convergence of Mackey-Glass equation 

 
Fig. 7 Target and forecast values of Mackey-Glass time series 

 



           

 
Fig. 8. Prediction error graph for Mackey-Glass equation 

In order to numerically evaluate this method with 

previous methods for prediction, the RMSE of training and 

testing the suggested technique and some of the approaches 

presented in the articles are shown in Table (2). The last 

line of this Table shows the results of the proposed method. 

The results display the superiority and better efficiency of 

the presented method for forecasting this chaotic time 

series. 

Table 2. The efficiency of Mackey-Glass time series prediction 

Ref. Technique RMSE Train RMSE Test 

Chen et al. [42] Auto-regressive model - 0.19 

Chen et al. [42] Cascade correlation NN - 0.06 

Chen et al. [42] Backpropagation NN - 0.02 

Chen et al. [42] Linear prediction method - 0.55 

Lin et al. [29] Product T-norm - 0.09 

Lin et al. [29] Classical RBF (with 23 neurons) - 0.0114 

Lin et al. [29] PG-RBF network - 0.0028 

Kim et al. [43] Genetic algorithm and fuzzy system - 0.049 

Chen et al. [42] LLWNN+gradient 0.0038 0.0041 

Chen et al. [42] LLWNN+hybrid 0.0033 0.0036 

Yousefi et al. [44] LLNF 0.0013 0.0020 

Miranian et al. [45] LNF with LSSVMs 0.00070 0.00079 

 Proposed method 0.00015 0.00026 

 

4.2. Lorenz time series 

Lorenz time series is produced by three differential 

equations provided in Eq. (16). 

{
𝑥̇ = 𝑎(𝑦 − 𝑥)

𝑦̇ = 𝛽𝑥 − 𝑧𝑥 − 𝑦
𝑧̇ = 𝑥𝑦 − 𝛾𝑧

 
(16) 

In ɑ = 10, γ = 3/8, β > 24.74, the system's output is 

chaotic. The standard values for reconstructing the state 

space of this time series are ԏ = 3, and D = 3. In the 

simulation to compare the time series with other similar 

works, the time series ɑ = 10, β = 28, γ = 3.8 is considered. 

The input variables are x(t - 6), x(t - 3), x(t) to predict x(t - 

3) (three step ahead forecast). This time series is proficient 

with the parameters mentioned in Table (1). The 

convergence figure and error reduction of the suggested 

method are shown in Figure 9.



           

 
Fig. 9 Convergence of RMSE diagram for Lorenz time series 

The predicted output by the current research method 

and the prediction error diagram are displayed in Figures 

10-11.

 
Fig. 10 Forecast output graph for Lorenz time series  

 



           

 
Fig 11. Prediction error graph for Lorenz time series 

In order to numerically evaluate this method with 

previous prediction methods, the NMSE of training and 

testing of the suggested method and a number of 

approaches presented in the articles are shown in Table (3). 

The last line of this table shows the results of the suggested 

method. The results demonstration the superiority and 

better efficiency of the suggested technique for forecasting 

this chaotic time series.

Table 3. Comparison of forecast efficiency of Lorenz time series 

Ref. Method RMSE Train RMSE Test 

Mirikitani et al. [46] MLP-EKF  0.00023 0.00162 

Mirikitani et al. [46] MLP-BLM 0.00033 0.00096 

Mirikitani et al. [46] RNN-BPTT 0.00056 0.00185 

Chen et al. [42] ANFIS 0.0026 0.0021 

Lin et al. [29] Fuzzy prediction based on SVD  - 0.0106 

Lin et al. [29] LLNF 0.00013 0.00029 

Miranian et al. [45] LNF with LSSVMs - 0.000064 

Chen et al. [42] ICA-ANFIS 0.00007 0.00012 

 Proposed method 0.0000051 0.000056 

 

4.3. Rossler time series 

The Rossler model is characterized by a system of 

three ordinary differential equations, defining a continuous 

dynamic system. This system represents the chaotic 

dynamics associated with the fractal properties of Rossler 

absorption. The following differential equations define the 

Rossler time series: 

{

𝑥̇ = −𝑧 − 𝑦
𝑦̇ = −𝑎𝑦 + 𝑥

𝑧̇ = 𝑏 + 𝑧(𝑥 − 𝑐)
 

(17) 

For a = 0.2, b = 0.2, and c = 4.6, the system's behavior 

becomes chaotic. The standard values for reconstructing 

the state space of this time series are ԏ = 2 and D = 3. The 

input variables are x(t-4), x(t-2), x(t) to predict x(t-2) 

(prediction two steps ahead). This time series is 

accomplished with the parameters mentioned in Table (1). 

The predicted output is shown in Figure 12. As can be seen, 

using the presented method, the results of this nonlinear 

equation are also predicted with a very favorable accuracy.



           

 
Fig. 12 Forecast output graph for Rossler time series 

In order to numerically evaluate this method with 

previous prediction methods, NMSE of training and testing 

of the suggested method and some of the methods 

presented in the articles are offered in Table (4). The last 

line of this Table shows the results of the proposed method. 

The results show the superiority and better efficiency of the 

proposed method for forecasting this chaotic time series.

Table 4. Comparison of Rossler's time series prediction efficiency 

Ref. Method RMSE Train RMSE Test 

Mirikitani et al. [46] MLP-EKF 0.00025 0.00193 

Mirikitani et al. [46] MLP-BLM  0.00101 0.00047 

Mirikitani et al. [46] RNN-BPTT 0.00311 0.00070 

Jang [39] ANFIS 0.0118 0.0147 

Yousefi et al. [44] LLNF 0.000071 0.000048 

Miranian et al. [45] LNF with LSSVMs 0.000015 0.0000065 

 Proposed method 0.000004 0.0000007 

4.4. Sunspot Number time series 

The time series of the number of sunspots is an 

unstable and very complicated time series of the real world. 

This series is related to the annual average number of 

observed sunspots. The average time series of sunspots 

recorded from 1700 to 1979 is presented in [66]. The 

standard values for reconstructing the state space of this 

time series are ԏ = 1 and D = 4. Therefore, the input 

variables are x(t - 4), x(t - 3), x(t -2), x(t -1), x(t) to predict 

x(t +2) (prediction two step ahead). The convergence 

diagram and error reduction of the suggested method are 

depicted in Figure 13. 

The real and forecast values of the test time series are 

displayed in Figure 14. The results show the high accuracy 

of the presented method in predicting the temporal 

behavior of nonlinear dynamic systems.



           

 
Fig. 14 Prediction output graph for Sunspot Number time series 

In order to numerically evaluate this method with 

previous prediction methods, the RMSE of training and 

testing of the proposed method and several methods 

presented in the articles are provided in Table (5). The last 

line of this Table shows the results of the proposed method. 

The results show the superiority and better efficiency of the 

presented method for forecasting this time series.

Table 5. Sunspot Number time series prediction efficiency 

Ref. Method RMSE Train RMSE Test 

Tong et al. [47] Threshold autoregression 0.097 0.96 

Weigend et al. [48] Statistical method 0.082 0.086 

Svarer et al. [49] AFGF 0.090 0.082 

Aliev et al. [50] RFNN - 0.074 

Miranian et al. [45] LNF with LSSVMs 0.050 0.063 

Zhang et al. [51] FWNN-M 0.0828 0.0973 

Proposed method Proposed method 0.0152 0.0265 

 

In continuation of the present work, future studies 

could explore several avenues to further enhance the 

proposed method's effectiveness in dynamic time series 

prediction. These include fine-tuning model parameters to 

optimize predictive accuracy, extending the framework to 

handle multivariate time series data and diverse 

application domains, incorporating external factors or 

exogenous variables into the modeling process, evaluating 

the method's performance for long-term forecasting 

horizons, benchmarking against state-of-the-art 

techniques, exploring hybrid approaches to leverage 

complementary strengths, and developing strategies for 

real-time implementation and deployment. By addressing 

these areas, researchers can advance the understanding 

and applicability of the enhanced adaptive neural-fuzzy 

inference system, contributing to advancements in time 

series forecasting and predictive analytics. 

5. Conclusion  

This paper presents an enhanced version of the 

adaptive neuro-fuzzy inference system (ANFIS) with 

output feedback, trained using the Imperial competitive 

algorithm (ICA) for forecasting chaotic time series. By 

incorporating output feedback from previous stages, the 

ANFIS model overcomes its static nature and enhances its 

ability to handle dynamic issues and temporal changes in 

the data. Furthermore, a combination of ICA and least 

squares estimation (LSE) is utilized to optimize the model 

parameters during training. This learning algorithm makes 

it possible to identify and adjust the optimal structure of the 

adaptive neural-fuzzy inference system in the most 

desirable way while eliminating the problems caused by 

updating the parameters with gradient-based methods. In 

addition, the complexity of this algorithm is less compared 

to gradient-based methods. The results of using this 

method to predict chaotic time series show a remarkable 

improvement in the performance of the improved adaptive 

neuro-fuzzy inference system compared to previous 

methods. This shows the proper performance of the 

improved adaptive neural-fuzzy inference system in dealing 

with dynamic problems and its incredible ability to learn 

and train parameters. 
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