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Article Info   Abstract 

One important aspect of solar radiation that has a direct impact on atmospheric processes, climatic 
conditions, and energy generation is direct normal irradiance. The integration of solar geometry, 
geographic location, and atmospheric characteristics is required for the prediction of Direct Normal 
Irradiance. Predicting Direct Normal Irradiance is essential for maximizing the efficiency of solar 
power plants in the field of renewable energy. Precise predictions facilitate the efficient assimilation 
of solar electricity into the electrical grid, augmenting energy production and maintaining system 
stability. This study uses the Genetic algorithm, Moth Flame Optimization, and Ant Lion Optimizer 
to optimize the Random Forest model. The basic approach for this study is provided as a novel 
hybrid method by combining Ant Lion Optimizer with Random Forest, which has the best 
performance outcome compared to other created models. The data used is from June 1, 2022, to 
July 30, 2023. In presenting this study, many aspects have been considered, including the 
coefficient of determination, root mean square error, mean absolute percentage error, and mean 
absolute error. The proposed model’s findings with the highest amount of R-squared have shown 
satisfactory performance. 
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1. Introduction 
The issues related to the depletion of fossil energy, 

environmental decline, and global warming are escalating 

due to the continuous growth in energy consumption 

driven by population increase, rapid industrialization, and 

economic development [1]. Consequently, there is a 

heightened emphasis on optimizing the utilization of 

abundant and sustainable renewable energy sources, with a 

specific focus on solar and wind energy [2]. In many 

countries, renewable energy serves as a viable alternative to 

fossil fuels, playing a crucial role in diminishing greenhouse 

gas emissions. Photovoltaic (PV) power generation, in 
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particular, has gained widespread popularity due to its 

numerous benefits such as sustainability, minimal site 

installation demands, user-friendliness, and safety [3]. The 

primary challenge in producing solar energy is the 

intermittent power generation of photovoltaic systems, 

which is mostly caused by weather. Fundamentally, the 

quality of electric power output may be significantly 

impacted by variations in temperature and irradiance [4]. 

Predicting solar irradiance may be a useful tool for 

estimating power production since it is closely linked to 

solar power harvesting [5]. The photovoltaic system's 

power imbalance may result in a considerable loss of 
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economic profit for large-scale solar farms. In order to 

minimize the effects of uncertainty and energy prices and 

to facilitate the appropriate integration of photovoltaic 

systems in a smart grid, it is becoming more important to 

anticipate solar irradiance accurately. Numerous research 

has been conducted on models and algorithms to forecast 

sun irradiance based on regularly collected meteorological 

variables like humidity and temperature [6],[7]. 

Ensuring precise forecasts of future solar radiation, a 

key factor affecting PV power generation, is essential for 

preventing unnecessary energy losses. Solar radiation 

prediction models are typically categorized into two groups: 

physical models and data-driven models. By utilizing 

physical equations that consider the interactions among 

solar geometric elements such as azimuth and solar altitude 

angle and meteorological factors including cloud cover and 

temperature, the physical model anticipates solar 

irradiance for the next day [8],[9]. However, the complex 

definitions of meteorological variables like temperature, 

cloud cover, and solar irradiance pose challenges for this 

model. The efficacy of the physical model is additionally 

hindered by the inherent nonlinearity of relational 

expressions and the necessity for frequent adjustments to 

boundary conditions and correlation coefficients in 

response to changing external conditions [10]. Without 

knowledge of solar geometry, data-driven models may be 

constructed via learning processes and anticipate solar 

irradiance based on the statistical or probabilistic 

associations observed in measured data [11],[12]. In some 

studies, Artificial Neural Network (ANN) approaches were 

used to build early versions of data-driven models 

[13][14][15]. According to [16], data-driven solar 

forecasting models now have much higher accuracy thanks 

to ANNs' learning abilities, which are especially useful for 

handling nonlinear data. Their limited structure, however, 

makes it difficult for them to manage massive amounts of 

data and interpret a variety of meteorological factors. When 

compared to ANNs, ensemble techniques like Random 

Forests and Gradient Boosting are often more resilient to 

noisy data and outliers. The effect of individual faults is 

lessened when many models are combined. Multiple weak 

regressors, also known as base learners, are used in 

ensemble learning models. These learners are taught on the 

training set and then integrated by a meta-learner on the 

validation set. Recently, there has been a lot of interest in 

ensemble learning-based solar irradiance predictions. [17] 

applied ensemble pruning across three distinct ensemble 

learning methodologies, namely bagging, random 

subspace, and boosting. [18] introduced the Integrated 

Bayesian Multi-Model Uncertainty Estimation Framework 

(IBMUEF) to concurrently assess the uncertainty 

associated with both the model structure and input 

parameters. For the prediction of half-hourly Global 

Horizontal Irradiance (GHI), [19] integrated the 

foundational persistent model with four novel models: 

static, dynamic, moving average, and amplified persistent. 

The aggregation parameters of these models were 

enhanced using a particle swarm optimizer. Additionally, 

[20] employed multi-task representation learning within 

various customized groups to diversify the array of base 

learners, specifically Gated Recurrent Unit (GRU). One 

popular class of machine learning algorithms is random 

forests. Their foundation is an ensemble learning technique 

that generates predictions by combining many decision 

trees. A portion of the data and accessible characteristics 

are used to train each tree in the random forest. This lessens 

the possibility of overfitting and enhances the model's 

ability to generalize. Leo Breiman initially presented the 

random forest method in 2001[21]. It is a well-liked and 

effective technique that has been used to many different 

fields, such as medical diagnosis, credit scoring, and picture 

and voice recognition. The random forest technique 

consists of building several decision trees, each of which is 

trained using a distinct subset of the data. The projections 

of every tree in the forest are then combined to create the 

final forecast. This enhances the model's accuracy and 

lowers variance. The particular model used in this study is 

referred to as RF, and it is a variation of the standard 

random forest technique. The RF model is a well-liked 

option for several applications because to its reputation for 

handling noisy features and high-dimensional data [21]. 

Tweaking hyperparameters may have a substantial 

influence on the performance of a model. Identifying the 

most favorable values may result in enhanced accuracy, 

precision, recall, or other pertinent metrics, contingent 

upon the particular objective of the model. Overfitting is the 

phenomenon when a model has good performance on the 

training data but exhibits poor performance on fresh, 

unseen data. Underfitting occurs when a model is too 

simple and fails to capture the underlying patterns. 

Optimizing hyperparameters aids in achieving an optimal 

equilibrium and mitigating the risks of overfitting or 

underfitting [22]. The optimization methods used in this 

work are Genetic algorithm (GA) [23], Moth flame 

optimization (MFO) [24] and Ant lion optimization (ALO) 

[25]. The GA optimization is a search heuristic that draws 

inspiration from the ideas of natural selection and genetics. 

This approach, often used for hyperparameter optimization 

in machine learning models and other applications, begins 

by generating an initial population of candidate solutions. 

Each solution corresponds to a distinct combination of 

hyperparameters for the machine learning model, where 



           

individuals within the population are typically referred to 

as solutions [22]. The Moth Flame Optimizer represents an 

advanced tool known for significantly enhancing the 

performance of various models. The inspiration behind its 

development stems from the behavior of nocturnal 

butterflies, which exhibit a tendency to be attracted to a 

light source throughout the night. These insects have a 

natural inclination to navigate by flying toward the moon, a 

strategy that has proven effective for long-distance travel. 

However, there is a susceptibility to getting trapped when 

they repetitively orbit around the source of light. The 

specific movement pattern has been thoroughly 

investigated and can be employed as a highly effective 

optimizer across diverse domains, such as electrical and 

energy systems, business administration, architectural 

design, image processing, and medicinal applications [24]. 

Another model used in this method is ALO, the ALO 

algorithm originated from observing the hunting behavior 

of ant-lion larvae as they pursue ants. Initial investigations 

might explore additional advanced features [26]. The 

system, which revolves around the interactions between ant 

lions and their prey which are ants, aims to broaden the 

exploration scope. Through traps, ant lions can seize and 

nourish themselves with ants, thereby enhancing their 

overall fitness [27]. The data has been obtained from 

several meteorological stations equipped with modern sun 

radiance measuring tools. The dataset covers a defined 

period of time and geographical area in order to include a 

wide variety of solar conditions.  

• The specified duration for collecting data spans a 

year, extending from mid-2022 to mid-2023, 

within the province of Qinghai. Situated in western 

China, northeast of the Tibetan Plateau, Qinghai's 

capital is Xining. Renowned for its varied 

topography, the province encompasses mountains, 

plateaus, lakes, and China's largest lake, Lake 

Qinghai. The data comprises six components: 

temperature (temp), relative humidity (RH), cloud 

cover (CC), wind gusts (WG), diffuse radiation 

(DR), and direct normal irradiance (DNI). To 

evaluate the magnitude and direction of a linear 

association between two continuous variables, the 

Pearson correlation is employed.  

• This statistical measure yields a numerical value 

between -1 and 1, with 0 indicating no linear 

correlation, 1 representing a perfect positive linear 

relationship, and -1 indicating a perfect negative 

linear relationship. In this study, components with 

weak correlations to DNI are excluded based on the 

Pearson correlation analysis. 

• Additionally, factors that showed a perfect 

correlation namely, 1 with DNI were also removed. 

The research also used a different approach called 

min-max normalization, often known as feature 

scaling or min-max scaling. It is a popular 

technique for preparing data for machine learning. 

Rescaling and normalizing the range of numerical 

attributes in a given dataset is the aim of this 

normalization procedure. 

The second part of the study describes the methods 

and materials. The third part provides information about 

results and discussion. The conclusion is presented in the 

fourth part. 

2. Material and methods  
2.1. Study area 

Qinghai province, which is situated in the 

northeastern part of the Tibetan Plateau, has great 

potential for solar energy harvesting and beautiful 

landscape. The enormous 720,000 square kilometer 

province of Qinghai, China, is situated at 35.7452° N 

latitude and 95.9956° E longitude. A key metric in solar 

energy research is the DNI, which measures the amount of 

solar radiation received per unit area by a surface that is 

perpendicular to the sun's beams. Precise DNI 

approximations are crucial for enhancing the layout and 

functionality of photovoltaic systems, offering important 

insights on the available solar power in a certain region. 

Qinghai's distinct topography, which includes its high 

altitudes and diverse terrain, greatly influences the amount 

of direct sunshine that reaches the surface. For precise DNI 

predictions, a thorough analysis of these topographical 

features is also necessary. Fig. 1 shows the topography of 

Qinghai graphically. Seasonal variations in the duration 

and angle of sunlight are strongly related to DNI 

oscillations. Understanding the availability of solar energy 

in detail is made easier with the use of seasonal forecasts.



           

 
Fig. 1. Map of the study area. 

 
2.2. Data source 

This dataset monitors variations for a year, from 2022 

to 2023. This dataset is intended to be used to train a 

prediction model that can forecast DNI levels in response 

to diverse environmental and meteorological variables. The 

dataset offers a comprehensive view of the factors 

impacting DNI since it includes a large number of variables 

that are routinely gathered. Comprehending the elements 

listed in Table 1 facilitates comprehension of the current 

meteorological conditions. The dataset was enhanced by 

Pearson correlation analysis, which included computing 

the linear correlations between the variables. The outcome 

of this analysis is shown in Fig. 2, showcasing the results of 

the Pearson correlation. Following the calculation of 

correlation coefficients, variables exhibiting correlation 

coefficients ranging from -0.1 to 0.1, as well as those 

displaying a perfect correlation of 1, were excluded from the 

study. In order to guarantee that the items retained in the 

DNI prediction model contribute significantly, a rigorous 

selection method is used to exclude duplicate variables or 

those with weak correlations. The main objective variable is 

the measured DNI. The dataset is preprocessed previous to 

model training to achieve optimum model performance.

Table 1. Input variables, features obtained from the Pearson correlation process. 

Features Temp RH CC WG DR DNI 

Definitions Temperature Relative humidity Cloud cover Wind gusts Diffuse radiation Direct normal irradiance 

Units (°𝐶) (%) (%) (𝑘𝑚/ℎ) (𝑊/𝑚²) (𝑊/𝑚²) 

 

2.2.1. Pearson correlation  

A numerical measure known as Pearson correlation, 

often called Pearson's correlation coefficient or simply 

Pearson's 𝑟, evaluates both the direction and intensity of a 

linear association between two variables. It quantifies the 

degree and direction of a linear correlation between two 

continuous variables through a specific numerical value. 

The formula for Pearson correlation in the equation (1) is as 

follows: 

𝑟 =
∑  (𝑋𝑖 − 𝑋‾)(𝑌𝑖 − 𝑌‾)

√∑  (𝑋𝑖 − 𝑋‾)
2∑  (𝑌𝑖 − 𝑌‾)

2
 (1) 

In this context, 𝑋𝑖 and 𝑌𝑖 represent individual data 

points, while �̄� and Ȳ denote the means of the 𝑋 and 𝑌 

variables, respectively. The symbol ∑ signifies the 

summation across all data points. The study examined the 



           

relationship between DNI and various factors as presented 

in Fig. 2. The Pearson correlation test was employed for this 

analysis, and the results are depicted in Fig. 2. Factors 

exhibiting a strong correlation were retained as input 

variables, while those with weak correlations (coefficients 

between -0.1 and 0.1) were excluded. Dew, Rain, Snow, 

Press, and WS were omitted from the input variables due to 

their limited correlation with DNI. 

 
Fig. 2. Heat map illustration showing variable correlation. 

 

Fig. 3 serves as a valuable tool for evaluating the 

relationship between variables. When data points on a 

scatterplot tightly group around a line, whether with a 

positive or negative slope, it signifies a correlation between 

the two variables.



           

 
Fig. 3. Employed a Pairplot to visually represent the relationships and distribution of the data. 

 

2.2.2. Splitting data  

The machine learning model is trained using the 

training set. In order to reduce mistakes or discrepancies 

between its predictions and the actual results, the model 

modifies its parameters as it discovers patterns and 

linkages in the data. The testing set is put aside to assess the 

trained model's performance. It makes it possible to 

evaluate how well the model applies to fresh, untested data. 

The efficacy of the model is evaluated based on its capacity 

to provide precise forecasts on non-training data.  

 

2.2.3. Data normalization  

A method known as MinMax normalization is 

employed for data preparation to scale and adjust 

numerical characteristics in a dataset. It goes by various 

names, including feature scaling or min-max scaling. This 

approach involves transforming feature values to fall within 

a specified range, typically between 0 and 1. The utilization 

of MinMax normalization is aimed at preventing features 

with larger magnitudes from dominating the learning 

process, thereby ensuring equal contribution from each 

feature in machine learning models during analysis. The 

normalization formula MinMax is represented by the 

equation (2): 

𝑋𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑
𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛
 (2) 

 

2.2.4. The dataset's statistical outcome 

The statistical results obtained from the gathered data 

are shown in Table 2. Descriptive statistics are used to 



           

delineate different characteristics of the dataset, providing 

a succinct overview of its aspects. The statistics provided 

include the Count, which represents the number of 

observations in the dataset, as well as the Average and 

Median, which serve as measures of central tendency. 

Skewness is a measure that reveals the degree of symmetry 

in the distribution of data. Standard deviation is a statistical 

measure that quantifies the extent to which data points 

deviate from the mean, indicating the dispersion of the 

data. Kurtosis measures the degree of peakedness or 

flatness of the data compared to a normal distribution. 

Variance quantifies the amount of data fluctuation from its 

mean. Maximum and minimum values represent the 

highest and lowest values in the dataset, respectively. By 

analyzing these descriptive statistics, researchers may get a 

more comprehensive understanding of the dataset's 

attributes, allowing them to make educated judgments 

based on the insights uncovered.

Table 2. The statistical outcome of the abstained features. 
 

Temp RH CC WG DR DNI 

Count 8760 8760 8760 8760 8760 8760 

Mean 6.83 28.03 29.86 23.09 61.25 306.89 

Std. 10.98 14.53 29.58 10.36 84.57 372.71 

Min -20.2 3 0 2.9 0 0 

50% 6.85 25 22 21.2 8 27.25 

Max 34.4 90 100 83.9 486 1076.6 

Variance 120.6 211.13 874.72 107.34 7151.8 138913 

 
2.3. Model description  

2.3.1. Random forest 

Although decision trees are often employed as simple 

regression and classification models, when they are used to 

solve complicated problems with numerous input factors, 

they have a tendency to over fit. The stochastic subspace 

approach [28] and bagging ensemble learning theory [29] 

were merged to create RF as demonstrated in Fig. 4, which 

was suggested in 2001 [21] to prevent a single decision tree 

from becoming unstable and prone to overfitting. RF is a 

technique for integrating several decision trees, where the 

output of each decision tree is combined to get the final 

conclusion. The bootstrap sampling approach is used to 

obtain the training samples for each base learner in the RF. 

Stated differently, a random subset is selected from all 

characteristics; the remaining samples are referred to as 

out-of-bag samples (OOB). Its unpredictability is evident in 

two ways: the feature vectors of the tree are likewise 

randomly produced, as are the training samples of the tree, 

which are drawn at random with replacement. This avoids 

the overfitting issue and enhances the variation between 

individual decision trees due to the unpredictability of 

training extraction. When the forest is finally built, the 

outcomes may be averaged using equation (3). 

Consequently, the final fusion model is more accurate. 

𝑓‾𝑟𝑓
𝐵 =

1

𝐵
∑  

𝐵

𝑏=1

𝑇(𝑥, 𝑂𝑏) (3) 

Where 𝑓‾𝑟𝑓
𝐵  is the average, 𝐵 represent the trees, and the 

output of each tree can express as 𝑇(𝑥, 𝑂𝑏).

 
Fig. 4. Empowering Predictive Insights: Harnessing the Power of RF for Data-driven Forecasting. 



           

2.3.2. Genetic algorithm  

In 1971, John Holland devised the GA, a probabilistic 

search method aimed at addressing intricate optimization 

problems characterized by high complexity and 

unfavorable structures [23]. This approach, inspired by 

natural selection and genetics, emulates the mechanics of 

evolution to approximate solutions for optimization and 

search challenges. The heuristic search strategy, grounded 

in genetic evolution and natural selection, involves 

iteratively generating a population comprising individuals 

or chromosomes potentially serving as solutions to the 

optimization problem. Each participant's fitness is assessed 

using an objective function gauging their efficacy in 

problem-solving. Selection for reproduction is contingent 

on fitness, favoring individuals with superior fitness for 

procreation. The generation of offspring involves the 

exchange of genetic information among selectively chosen 

individuals, simulating biological crossover or 

recombination. Introducing random alterations enhances 

individual genetic variation. The subsequent generation is 

formed by crossing the newly generated offspring with 

some of the existing individuals, perpetuating the evolution 

of the population by favoring more adaptable individuals. 

The algorithm continues through these steps iteratively 

until a specified termination criterion is met or after a 

predefined number of generations. Genetic Algorithm 

Optimization excels in tackling complex, non-linear, 

multidimensional optimization problems that may pose 

challenges for conventional methods. Its efficacy lies in the 

exploration of a broad spectrum of potential solutions and 

the identification of those approaching optimality. This 

versatility makes it applicable across various domains, 

including scheduling, machine learning, engineering, and 

finance [30]. 

 

2.3.3. Moth flame optimization 

The main objective of MFO is to comprehend the 

navigation system of moths in transverse orientation. 

Moths cover extensive distances during nighttime flights by 

maintaining a consistent angle with the sky [24]. This study 

focuses on the spatial configurations of moths, treated as 

variables, which might be remedies. Moths have the 

capability to adjust their position vectors for navigation in 

1D, 2D, 3D, or hyper-dimensional space. MFO 

demonstrates computational efficiency and robustness, 

with the proposed method ensuring convergence. The 

representation of MFO is commonly articulated by using 

equations (4) and (5): 

𝑀 =

[
 
 
 
 
𝐶𝑂1,1 𝐶𝑂1,2 ⋯ ⋯ 𝐶𝑂1,ℎ
𝐶𝑂2,1 𝐶𝑂2,2 ⋯ ⋯ 𝐶𝑂2,ℎ
⋮ ⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮ ⋮

𝐶𝑂𝑎,1 𝐶𝑂𝑎,2 ⋯ ⋯ 𝐶𝑂𝑛,ℎ]
 
 
 
 

 (4) 

𝑎 and ℎ represent the number of moths and 

dimensions, respectively. 

𝑆 =

[
 
 
 
 
𝑆1,1 𝑆1,2 ⋯ ⋯ 𝑆1,ℎ
𝑆2,1 𝑆2,2 ⋯ ⋯ 𝑆2,ℎ
⋮ ⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮ ⋮
𝑆𝑎,1 𝑆𝑎,2 ⋯ ⋯ 𝑆2,ℎ]

 
 
 
 

 (5) 

MFO is a global optimization process that consists of 

three steps. 

𝑀𝐹𝑂 = (𝐼, 𝐹, 𝑇) (6) 

Where 𝑇 is the halting criterion, 𝐹 is the moth's space 

travel, and 𝐼 is a function. 

𝑋𝑖 = 𝑡(𝐶𝑖 , 𝑆𝑗) (7) 

𝐶𝑖 represents the count of moths in the 𝑖𝑡ℎ category, 𝑆𝑗 

denotes the quantity of flames in the 𝑗𝑡ℎ category, and 𝑡 is 

the twisting function, which can be defined by using 

equation (8) and (9): 

𝑆(𝐶𝑖 , 𝑆𝑗) = 𝑍𝑖 ⋅ 𝑒
𝑏𝑡 ⋅ cos (2𝜋𝑡) + 𝑆𝑗  (8) 

In this context, 𝑍𝑖 represents the distance between a 

moth and a flame, 𝑏 is a constant value, and 𝑡 is a random 

number selected from the range [-1,1]. 

Zi = |Sj − Xi| (9) 

 

2.3.4. Ant lion optimizer 

A technique known as the ant lion optimizer algorithm 

was developed and presented in [25] to tackle a range of 

real-world engineering challenges. It emulates the foraging 

behavior of ants in their natural habitat. The literature 

discusses several problems that were successfully 

addressed using ALO [31][27][32]. In this algorithm, an 

antlion, equipped with large jaws, forms cone-shaped 

depressions in the sand, as illustrated in Fig. 5. These pits 

serve as traps for ants. Once the pit is created, the larva 

conceals itself beneath the base of the cone and awaits the 

arrival of ants into the depressions, as depicted in Fig. 6. 

Within the ALO, two distinct categories of search agents 

exist: ants and antlions. Notably, the superior search agents 

are designated as antlions, and they persist in their 

locations even after eliminating a particular ant.



           

 
Fig. 5. Description of the hunting process of the antlion. 

 

The identification of an ant's position can be achieved 

by using equation (10):  

𝐴𝑛𝑡𝑖
𝑡 =

𝑟𝑎
𝑖𝑡 + 𝑟𝑒

𝑖𝑡

2
 (10) 

Here, 𝑟𝑎
𝑖𝑡  refers to the random walk around the chosen 

ant lion, and 𝑟𝑒
𝑖𝑡  denotes the random walk around the elite 

at the 𝑖𝑡𝑡ℎ iteration. The movement pattern of an 𝐴𝑛𝑡𝑖
𝑖𝑡 as it 

randomly traverses the vicinity of a presumed Antlion 𝑖𝑖
𝑖𝑡 

can be expressed by using equation (11): 

𝑋𝑖
𝑖𝑡 =

(𝑋𝑖
𝑖𝑡 − 𝐴𝑖) × (𝐷𝑖 − 𝐶𝑖

𝑖𝑡)

(𝐷𝑖
𝑖𝑡 − 𝐴𝑖)

+ 𝐶𝑖 (11) 

Where 𝐴𝑖 represents the minimum value from the 

random walk of the 𝑖th variable, 𝐷𝑖  represents the maximum 

value of the 𝑖th variable. 𝐶𝑖
𝑖𝑡 is the minimum value of the 𝑖th 

variable at the 𝑖𝑡th iteration, and 𝐷𝑖
𝑖𝑡   is the maximum value 

of the 𝑖th variable at the 𝑖𝑡th iteration. The ants exhibit a 

stochastic movement pattern in their natural environment 

as they forage for food. This behavior may be replicated via 

simulation using equation (12): 

𝑋(𝑖𝑡) = [0,  CuSu (2𝑟(𝑖𝑡1) − 1), CuSu (2𝑟(𝑖𝑡2)

− 1),… , CuSu (2𝑟(𝑖𝑡𝑛) − 1)] 
(12) 

where: CuSu denotes the cumulative sum of the 

pending time 𝑟(𝑖𝑡), which is defined using equation (13): 

𝑟(𝑖𝑡) = {
1, if rand > 0,5
0, if rand ⩽ 0,5

 (13) 

The antlions notice a prey's intrusion in their pit. They 

pour sand on them and roll them down the pit. The model 

of this phase may be stated using equations (14) and (15): 

𝑐𝑖𝑡 =
𝑐𝑖𝑡

10𝜔 ×
𝑖𝑡

𝑖𝑡max

 (14) 

𝑑𝑖𝑡 =
𝑑𝑖𝑡

10𝜔 ×
𝑖𝑡

𝑖𝑡max

 (15) 

Here, 𝑐𝑖𝑡   and 𝑑𝑖𝑡 represent the lower and upper 

bounds of the variables undergoing optimization, and 𝜔 is 

a constant with a fixed value determined based on the 

current iteration, using equation (16): 

𝜔 =

{
 
 

 
 
2, if it > 10% ⋅ 𝑖𝑡max
3, if it > 50% ⋅ 𝑖𝑡max
4, if it > 75% ⋅ 𝑖𝑡max
5, if it > 90% ⋅ 𝑖𝑡max
6, if it > 95% ⋅ 𝑖𝑡max

 (16) 

During the ALO optimization process, the concluding 

phase involves capturing prey through predatory tactics 

and subsequently reconstructing the trap. 

This step can be obtained by using equation (17): 

Antlion  𝑗
𝑖𝑡 = Ant  𝑖

𝑖𝑡; if  𝑓(Ant  𝑖
𝑖𝑡) > 𝑓( Antlion  𝑗

𝑖𝑡) (17) 

𝐴𝑛𝑡𝑙𝑖𝑜𝑛𝑗
𝑖𝑡 refers to the position of the selected 𝑗th 

antlion at the 𝑖th iteration, and 𝐴𝑛𝑡𝑖
𝑖𝑡 represents the location 

of the 𝑖th ant at the same iteration. Table 3 demonstrate the 



           

setting of the hyper parameters of the RF and finding the 

optimal values for each parameter by ALO.

 
Fig. 6. The antlion optimizer flowchart. 

Table 3. Setting of the hyperparameters and finding the optimal values by ALO. 

Random Forest Best value 

Max depth [10, 100, None] 80 

Max features [auto and sqrt] auto 

Min samples leaf [1, 4] 2 

Min samples split [2, 10] 2 

Number of estimators [200, 2000] 500 

 
2.4. Assessment criteria  

Evaluation metrics are crucial in machine learning 

projects since they provide a quantifiable assessment of a 

model's accuracy. These metrics are used to evaluate the 

model's ability to predict outcomes on new and unseen 

data. The model's performance is assessed using four 

assessment metrics: Mean Absolute Error (𝑀𝐴𝐸), Mean 

Absolute Percentage Error (𝑀𝐴𝑃𝐸), Mean Square Error 

(𝑀𝑆𝐸), and R-squared (𝑅2) using equations (18)-(21). 

𝑀𝑆𝐸 =
1

𝑁
∑  

𝑛

𝑘=0

(
𝑛
𝑘
) (𝐹𝑖 − 𝑌𝑖)𝑏2 (18) 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑|

𝑦𝑖 − �̂�𝑖
𝑦𝑖

|

𝑛

𝑖=1

 (19) 

𝑀𝐴𝐸 =
∑ |𝑦𝑖 − �̂�𝑖|
𝑛
𝑖=1

𝑛
 (20) 

𝑅2 = 1 −
∑ (𝑦𝑖 − �̂�𝑖)

2𝑛
𝑖=1  

∑ (𝑦𝑖 − �̅�)
2𝑛

𝑖=1

 (21) 

3. Result and Discussion 
3.1. Comparative analysis 

The effectiveness of the provided models was assessed 

using a range of common metrics, such as 𝑀𝐴𝐸, 𝑀𝐴𝑃𝐸, 𝑅2, 

and 𝑀𝑆𝐸. These metrics provide a comprehensive 



           

assessment of the forecast precision of the models. Table 4 

provides a summary of the performance metrics for four 

models: RF, GA-RF, MFO-RF, and ALO-RF. These models 

were developed and evaluated using range of obtained and 

prepared features for a Qinghai province, spanning from 

2022 to 2023. Table 4 presented result of all models via 

acquired evaluation metrics. 

Table 4. The presented models outcome via assessment criteria during train and testing phase. 

Models/Metrics RF GA-RF MFO-RF ALO-RF 

𝑹𝟐 

Train Set 

0.971 0.984 0.988 0.994 

MAPE 32.75 22.18 18.70 12.60 

MAE 48.01 25.97 20.88 13.67 

MSE 4159.26 2249.42 1696.00 865.24 

𝑹𝟐 

Test Set 

0.966 0.978 0.978 0.989 

MAPE 39.30 28.84 31.72 28.09 

MAE 46.68 36.40 36.67 31.74 

MSE 3990.80 2585.19 2572.83 2183.98 

 

Table 4 demonstrates that the ALO-RF model 

outperforms the other models in terms of predictive 

accuracy. The model's capacity to precisely depict the 

intricate temporal patterns and correlations found in stock 

price data is shown by its very low values for MAE, MAPE, 

and MSE. The results suggest that the ALO-RF model may 

be a reliable tool for detecting possible market trends and 

making informed investment decisions. 

 
Fig. 7. The illustration of the comparison between present models during train. 



           

 
Fig. 8. The illustration of the comparison between present models during test. 

Upon comparing the performance of the four models 

listed in Table 3, it is evident that the ALO approach 

outperformed the MFO and GA techniques in optimizing 

the hyperparameters of the provided model. The RF, GA-

RF, MFO-RF, and ALO-RF results, with corresponding 

values of 0.966, 0.978, 0.978 and 0.989, provide evidence 

of the enhanced performance of the model. The assessment 

results of the created models are shown in Fig. 7 and Fig. 8. 

It is obvious from the figures that ALO-RF outperforms all 

other models in terms of all evaluation criteria. The results 

indicate that the optimized model has improved the 

accuracy of the forecast. The ALO-RF model, optimized 

using the ALO approach, has a 𝑅2 evaluation criteria score 

of 0.989. This result illustrates that optimization has a 

favorable influence on prediction in comparison to the non-

optimized RF model. The RF achieved a performance 

metric of 0.95 without using the optimization strategy. The 

created models are compared in Fig. 9 and Fig. 10.

 
Fig. 9. Visual comparison between real data and data predicted by the ALO-RF. 



           

 
Fig. 10. Visual comparison between real data and data predicted by the ALO-RF during test. 

 

Realistically, a comprehensive solar energy forecasting 

Method might be implemented in response to the study's 

identified limitations and suggestions for future research. 

In order to address the demand for streamlined solar power 

generation and grid integration, this Method would utilize 

sophisticated machine learning algorithms and integrate 

real-time data to deliver precise forecasts of DNI across 

diverse geographical areas. By extending the geographical 

coverage beyond Qinghai Province and integrating more 

extended time periods, the Method would be capable of 

accommodating a wide range of locations and capturing 

fluctuations in seasons, thereby guaranteeing the provision 

of dependable and complex forecasts. By integrating 

supplementary meteorological variables, a comprehensive 

comprehension of solar radiation patterns could be 

achieved, whereas the application of ensemble techniques 

could augment the accuracy of predictions. Constant 

refinement of forecasts and adaptation to changing 

environmental conditions would be made possible through 

the incorporation of real-time data and model updating 

mechanisms. In essence, the implementation of this solar 

energy forecasting Method would grant grid operators and 

renewable energy developers the ability to maximize the 

production of solar power, diminish dependence on non-

renewable energy resources, and make a positive 

contribution towards a sustainable energy landscape. 

4. Conclusion 
The expanding global population is causing an 

increase in the use of non-renewable natural resources. 

More effective ways to handle the energy dilemma must be 

developed since non-renewable energy sources are limited 

and will soon run out. Adopting a plan in line with 

sustainable development, the use of renewable resources 

becomes apparent as a critical step in guaranteeing a 

durable and resilient energy future. Given that the sun is 

the ultimate source of all energy, developing the capacity to 

forecast radiation levels in various regions ahead of time 

may provide a workable answer to the global energy 

dilemma. The conversion of radiation into energy has the 

potential to be far more efficient by taking advantage of 

these expected outcomes. This work has been presented 

using a variety of machine learning techniques, including 

RF and optimized RF with GA, MFO, and ALO. The criteria 

demonstrate ALO's advantage over other used techniques. 

The variables were gathered between 2022 and 2023; the 

data came from the Chinese province of Qinghai. Before 

being utilized as input data for the model, the acquired data 

underwent a number of phases of processing. The 

procedures utilized to prepare the data included the 

Pearson correlation test, data normalization, and splitting 

the data into training and testing sets. The overall findings 

of this study are as follows: 

• The outcome demonstrates that hybrid models 

outperform models without non-optimized 

approaches in producing more satisfactory result. 

In comparison the hybrid ALO-RF in this study 

performed better than other models with outcomes 

of 0.989 respectively. 

Developers in the renewable energy industry stand to 

gain greatly from the use of this advanced model to predict 

the sun's DNI in Qinghai Province. With improved solar 

panel efficiency, pollution in the environment might be 

decreased as a result of this concept. 

The research is limited to Qinghai Province in terms of 

its geographic scope, which may restrict the applicability of 



           

the results to other areas characterized by potentially 

distinct atmospheric conditions. In addition, the temporal 

scope is restricted to the period between June 2022 and 

July 2023, which may result in the omission of long-term 

patterns or seasonal fluctuations. Dependence on machine 

learning models necessitates a consideration of the training 

data and model assumptions, potentially compromising the 

accuracy of predictions due to concerns regarding data 

quality and availability. In dynamic environmental 

conditions, assumptions of stationary relationships 

between predictors and direct normal irradiance may not 

hold. Further investigation may aim to broaden the 

geographical range of the model's applicability in order to 

better suit diverse regions. By integrating longer-term 

datasets, one could account for seasonal and inter-annual 

fluctuations, thereby enhancing the precision of 

predictions. An examination of ensemble learning 

methodologies may enhance the resilience of the model, 

whereas the incorporation of supplementary 

meteorological variables may yield a more holistic 

comprehension of direct normal irradiance. The 

implementation of real-time data integration and model 

updating mechanisms has the potential to improve the 

accuracy of forecasts for shorter time periods. As a final 

step, the performance of the proposed model would be 

assessed in comparison to industry benchmarks and 

independent datasets through rigorous validation and 

benchmarking. 
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