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Highlights 
 

➢ Introduction of ImAUC-PSVM, a novel approach for cardiovascular disease (CVD) detection. 
➢ Integration of AUC maximization into the objective function for efficient handling of imbalanced datasets. 
➢ Theoretical analysis showcasing structural similarity with standard PSVM, ensuring efficacy in handling progressive CVD 

scenarios. 
➢ Incorporation of a tailored Differential Evolution algorithm for precise navigation of hyperparameter space, enhancing model 

performance. 
 

Article Info  Abstract 

Cardiovascular diseases (CVDs) are a primary global health concern, impacting the heart and blood 
vessels extensively. In this paper, we introduce a novel approach named Imbalanced Maximizing-
Area Under the Curve (AUC) Proximal Support Vector Machine (ImAUC-PSVM), which harnesses 
the foundational principles of traditional PSVM for the detection of CVDs. The ImAUC-PSVM 
method offers several key advantages: 1) It skillfully incorporates AUC maximization directly into 
the objective function. This integration simplifies the model by reducing the number of parameters 
needing adjustment, making it particularly effective for handling imbalanced datasets through an 
efficient training process; 2) Theoretical analysis demonstrates that ImAUC-PSVM retains the same 
structural solution as standard PSVM. This similarity means it inherits PSVM's benefits, 
particularly in addressing progressive CVD scenarios with rapid incremental updates. Furthermore, 
we have incorporated a tailored Differential Evolution (DE) algorithm designed to navigate the 
complex hyperparameter space with finesse. The performance of this model was rigorously 
evaluated using comprehensive data from a medical survey conducted in 2012, which included an 
extensive cohort of 26,002 athletes. Critical parameters such as height, weight, age, gender, blood 
pressure, and resting heart rate were meticulously documented. The empirical results, 
benchmarked against established performance metrics, underscore the model's exceptional 
accuracy, solidifying its role as a reliable tool for CVD detection. This approach advances 
cardiovascular diagnostics and offers a scalable and adaptable solution, potentially influencing the 
broader landscape of healthcare analytics and patient care. 
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1. Introduction 
Studies by the World Health Organization indicate 

that CVDs are the primary cause of death globally, 

accounting for roughly 17.9 million fatalities each year. Key 

factors contributing to this include smoking, being 

overweight, high blood pressure, and lack of physical 

activity. Although regular physical activity can mitigate 

 
* Corresponding Author: Krishnaveni Krishnasamy 

Email: Kkrishnaveni@srnmcollege.ac.in 
 

 

these dangers, athletes who undergo rigorous and frequent 

training or participate in competitions might still face risks 

due to the strenuous nature of their sports. In this situation, 

sports medicine experts are vital, managing the well-being 

of athletes through collecting biomedical and personal data 

and performing electrocardiogram (ECG) tests. The 

outcomes of ECG screenings help in classifying individuals 
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as either at risk or not. Athletes deemed at risk could be 

subject to limitations in their participation in sports and 

may require further health evaluations. There's a noticeable 

skew in the distribution of individuals in these categories, 

with a majority in the "N" category, indicating no risk 

factors, in contrast to the smaller "P" category for those 

with detected risks. Incorrect classification as false 

negatives can lead to severe, occasionally fatal outcomes. 

Conversely, false positives result in additional health 

examinations and a temporary halt in sports activities[1]. 

In the realm of medical diagnostics, the process of 

classification is crucial, facilitating the separation of binary 

outcomes and guiding clinical decision-making. Numerous 

machine learning algorithms have been integrated into 

diagnostic systems to improve the evaluation of data, health 

risk determination, and diagnostic precision[2], [3]. For 

example, Salam and McGrath [4] employed machine-

learning methods to detect skin conditions in dermatology. 

Similarly, Campbell et al. [5]used a kernel-based technique 

to diagnose a rare illness. However, the dataset used needed 

to be proportionate to the illness's actual occurrence in the 

broader population. Wong et al. [6]utilized Bayesian 

networks to analyze seven years of medical records, 

focusing on epidemiological research with potential uses in 

anti-terrorism efforts. Fontaine et al. [7]explored data 

mining methods for examining clinical neurological 

disorders. Sacchi et al. [8]implemented a Naive Bayes 

model enhanced with resampling to predict glaucoma, 

adapting to the limitations of the dataset at hand. 

Recommendations have been made to compare different 

classification techniques to identify the most effective 

method in medical statistical analysis. However, there is 

still a noticeable research gap in utilizing large datasets for 

diseases with low occurrence rates, particularly in high-

stress conditions. There are also ongoing discussions about 

cost-effective healthcare practices and the prudent use of 

medical tests. 

The omnipresent dilemma of biased category 

proportions within machine learning frameworks 

profoundly influences their efficiency and broad 

applicability[9], [10]. This complication surfaces when the 

frequency of examples among various groups is 

disproportionately allocated, often tilting in favor of the 

more ubiquitous group while disregarding the scarcer ones. 

Strategies like arbitrary amplification/reduction sampling 

and the SMOTE [11] are employed to counteract this 

disparity. Yet, these tactics could be more complex, 

encompassing the potential eradication of critical data and 

the jeopardy of inducing the framework to become overly 

specialized. Despite SMOTE's widespread adoption, it fails 

to offer empirical assurances for exactitude, especially 

within kernel-dependent paradigms[12]. Consequently, 

differential penalty methodologies have been innovated. 

These strategies impose divergent error tariffs on separate 

groups. However, crafting a suitable penalty framework can 

be complex owing to the erratic nature of penalty 

distribution[13]. It is essential to recognize that specific 

indicators, such as the AUC, display a higher susceptibility 

to category bias than mere precision metrics. A forward-

looking approach to navigating biased instruction involves 

the construction of classifiers to amplify the AUC[14]. This 

tactic handles category bias, striving for an optimal AUC, 

and usually demands fewer parameters than differential 

penalty solutions. This system holds particular merit in 

cardiovascular disease contexts, where the practicality and 

relevance of the predictive framework are of utmost 

importance[15]. The agility to adapt to sequential and 

instantaneous instruction is paramount, permitting the 

predictive framework to conform to novel evolutions and 

surfacing data trends. The PSVM emerges as a formidable 

classifier in this setting, as demonstrated by its efficacious 

implementation in various instantaneous instruction 

scenarios[16], [17]. 

PSVM shines in processing vast information clusters 

effortlessly, a pivotal characteristic for flexible or 

continuous learning spheres where data perpetually 

undergoes updates. PSVM's capacity for enabling quick, 

incremental enhancements without the need to overhaul 

the entire information assembly with every new 

contribution makes it exceptionally apt for fluid and 

dynamic data realms. Additionally, its sturdiness in the face 

of fluctuations and skill in deciphering complex data webs 

amplify its relevance across a wide range of rigorous and 

intricate educational scenarios. Such flexibility and 

computational dexterity designate PSVM as the go-to 

solution for scenarios necessitating swift and meticulous 

evaluative decisions. Furthermore, PSVM's structure 

facilitates seamless integration with varied optimization 

tactics, enhancing flexibility and operational effectiveness 

in numerous real-world implementations. 

A significant hurdle for machine learning models is 

their dependence on fine-tuning hyperparameters. Various 

approaches have been investigated for selecting 

hyperparameters, including genetic and grid search 

algorithms[18], [19]. Grid search proves to be a proper 

technique when working with a small set of parameters and 

their possible values. Nonetheless, its inherent constraints 

limit its applicability in more sophisticated machine-

learning scenarios. Conversely, genetic algorithms 

demonstrate proficiency in managing extensive and 

intricate sets of parameters[20]. Yet, current versions of 

genetic algorithms for hyperparameter tuning in machine 



           

learning necessitate that hyperparameter be intrinsically 

discrete or converted into discrete forms before 

optimization[21]. In this regard, DE [22], [23] emerges as a 

potent alternative to genetic algorithms. DE is a 

population-based, evolutionary algorithm tailored 

explicitly for optimizing search realms encompassing 

discrete and continuous components. DE adeptly merges 

the population-based framework characteristic of genetic 

algorithms with the adaptive mutation mechanisms typical 

in evolutionary strategies[24], [25]. 

We introduce a new strategy, named ImAUC-PSVM, 

for CVD to address skewed class distribution and fine-

tuning of hyperparameters. This method builds on the core 

advantages of the classic PSVM for tasks involving 

sentiment analysis, incorporating AUC to improve 

parameter adjustment and solve class imbalances. 

Conceptually, ImAUC-PSVM maintains the structural 

essence of PSVM, ensuring rapid adaptability to evolving 

challenges in CVD. Furthermore, the DE algorithm is 

utilized to optimize the hyperparameters of our newly 

developed model. We evaluate the effectiveness of our 

model using data from a comprehensive medical survey 

conducted in 2012, which included a participant pool of 

26,002 athletes. 

The key contributions of this research are: 

• A novel educational approach centered on PSVM 

has been developed. This strategy distinctively 

integrates the AUC evaluation measure into its core 

objective to address class disparity. By embedding 

the AUC measure directly into the educational 

algorithm, this methodology offers a sophisticated 

and effective resolution to the widespread problem 

of category imbalance in facet-term extraction 

endeavors. 

• This study employs the DE algorithm to optimize 

hyperparameters in the model. This integration is 

crucial in enhancing the model's performance and 

ability to adapt to diverse datasets. 

The organization of this document is as follows: 

Section 2 presents a review of relevant literature; Section 3 

outlines the developed method for detecting CVD; Section 

4 elaborates on the experimental results; and Section 5 

wraps up the study with a summary of the main findings. 

 

2. Related work 
The significance of data mining in numerous 

healthcare sectors is increasingly prominent, including 

tasks such as segmenting health-related images[26], 

detailed analysis of patient histories[27], and crafting 

diagnostic approaches for ailments like hepatic cancer [28] 

and Interstitial Lung Diseases (ILD)[29]. Its key strength 

lies in the processing and examining complex clinical data 

from the real world, which is vital for precise disease 

detection and prognosis. Analyzing Electronic Health 

Record (EHR) data in clinical informatics is critical, 

leveraging the capabilities of artificial intelligence and 

statistical methodologies. Particularly in cardiology, the 

impact of machine learning is notable. It is utilized for CVD 

forecasting [30] and categorizing blood pressure using the 

K-nearest neighbor (KNN) method[31]. SVM classifiers 

have gained traction, notably in forecasting coronary artery 

conditions [32] and identifying anomalies in heart valves 

via cardiac acoustics analysis[33]. The Naive Bayes 

technique is another efficient approach to predicting 

cardiac issues. The study by Pattekari and Parveen [34] 

demonstrates its efficiency when integrated with other data 

mining techniques. Shah and colleagues [35] enhanced the 

Naive Bayes approach for cardiac ailment detection by 

adding pattern recognition[36], though it may face 

challenges with datasets lacking features. Learning vector 

quantization (LVQ) is also explored. Chen et al. [37]created 

a cardiac disorder prediction system using LVQ, attaining 

an 80% accuracy rate in ROC curve assessments. The fusion 

of text and data mining is anticipated to propel further 

advancements in cardiac disease prognosis. Esfahani and 

Ghazanfari [38] validated the efficacy of a multi-classifier 

framework in CVD forecasting, benefiting from the diverse 

characteristics of training data and minimizing training 

duration. Bashir et al. [39]implemented machine learning 

classifiers for early detection of cardiac diseases, observing 

that precise detection correlates with the absence of 

disease. At the same time, accuracy pertains to correctly 

identifying high-risk patients. Additionally, Bashir et al. 

[40]introduced a composite scoring technique for 

diagnosing cardiovascular diseases, attaining an elevated 

average effectiveness (83%) across four standard datasets 

from the UCI repository, outperforming other systems and 

classifiers. 

Incorporating deep learning into CVD research has 

significantly expanded the potential for accurate 

predictions and diagnostic processes. This advanced 

method is particularly beneficial in dealing with the 

complexities and variability found in real-world healthcare 

datasets. In this regard, Mohan et al. [41]demonstrated the 

power of deep learning by creating a novel multi-task deep 

and wide neural network (MT-DWNN) designed to predict 

severe events during hospitalization. This model was 

extensively evaluated using a large dataset spanning 18 

years, which included 35,101 heart failure admissions and 

2,478 renal failure cases at the Chinese PLA General 

Hospital. The MT-DWNN showed exceptional 



           

effectiveness, especially in predicting renal issues in 

patients with heart failure, highlighting its proficiency in 

handling complex medical data and producing reliable 

predictions. Arslan and Karhan [42] made a notable 

contribution in this field by developing two sophisticated 

deep neural networks, each tailored for assessing risks 

associated with coronary heart disease. They addressed 

data inconsistency in real-world datasets by implementing 

a unique method for assembling training data. This 

approach divided the original dataset into segments, each 

characterized by broad and skewed distributions. This 

division was achieved using variational autoencoders, an 

artificial neural network that supports unsupervised 

learning of intricate data distributions. The next step in 

their process involved training separate classifiers on these 

distinct segments. This strategy aimed to enhance the 

accuracy of their predictive models. Using different 

classifiers for varied data segments enabled a more detailed 

understanding of the dataset’s diverse characteristics. This 

data processing method led to a more robust and precise 

prediction system, which is crucial in the case of coronary 

heart disease, where early and accurate detection is critical 

to effective treatment and management. 

Despite the progress made in CVD research by the 

current methodologies, they frequently encounter issues 

related to skewed class distribution and sensitivity to 

hyperparameter configurations, which hampers their 

effectiveness in CVD-focused applications. Recognizing 

these obstacles, our research introduces an innovative 

approach that combines the robustness of PSVM with the 

adaptive attributes of the DE algorithm, tailored for 

hyperparameter optimization. Our objective is to 

contribute a sophisticated and reliable tool to the arsenal of 

CVD solutions that is not only conceptually novel but also 

practically effective in various real-world situations. 

3. The proposed method 
This research introduces an innovative method for 

addressing heart-related conditions by focusing on direct 

improvement of the AUC, meticulously designed to 

overcome the issue of uneven class representation. Our 

intrigue with PSVM led to creating an AUC optimization 

method influenced by the PSVM structure, distinguished by 

three primary benefits. Firstly, in contrast to conventional 

SVMs that necessitate addressing a quadratic programming 

(QP) dilemma, hence incurring significant processing 

demands, PSVM introduces a solidly convex optimization 

puzzle with a simple, direct solution. This results in lower 

processing requirements while still delivering impressive 

precision in forecasts. Furthermore, prior studies [43], [44] 

have illustrated PSVM's capability to assimilate fresh data 

within a continuous feed framework. By circumventing the 

arduous task of repeated comprehensive matrix 

recalculations, PSVM enables effective and efficient 

adaptation within variable environments. Lastly, PSVM's 

configuration naturally eases the delineation of its 

association with the AUC index, particularly when the 

interim loss function effectively mirrors it, thus fostering 

the advancement of approaches dedicated to AUC 

enhancement. 

The AUC is broadly acknowledged as a more effective 

metric than accuracy for evaluating performance on 

imbalanced datasets[45]. This is attributed to AUC's 

resilience to imbalanced class distributions, rendering it a 

more dependable metric. From a probabilistic perspective, 

AUC(s) symbolizes the mean probability that a randomly 

chosen positive instance (x+) from the dominant class and 

a negative instance (x−) from the less represented class will 

be correctly ordered by the classifier, with x+ receiving a 

higher score than x−. This concept captures the 

mathematical expectation, shedding light on the classifier's 

average capability to differentiate between the two classes. 

The formula for AUC(s) is [46]:  

𝐴𝑈𝐶(𝑠) = 𝐸𝒙+~𝐷+𝐸𝒙−~𝐷−𝟏(𝒔(𝒙
+) > 𝒔(𝒙−)) (1) 

Here, 𝐷+ signifies the distribution for the majority 

class and 𝐷− for the minority class. The term 𝑠(·)  is the 

scoring function used by the classifier. For example, a 

standard formulation for 𝑠(𝒙) could be 𝑠(𝒙) = (𝜑
(𝒙)

1
)w′, 

where 𝜑(𝒙) is a feature transformation and 𝑤′ is the weight 

vector of the classifier.  

𝐸 signifies the statistical mean, 1(⋅) represents the 

characteristic function, assigning a value of 1 when its 

criterion is satisfied, and 0 otherwise. Owing to the abrupt 

nature of the characteristic function 1(⋅), it is replaced with 

a smooth and loss (1 − 𝒘́𝑇((𝜑(𝒙
+)
1
) − (𝜑

(𝒙−)

1
)))2. This 

modification facilitates the formulation of an experiential 

variant, labeled as 𝑅𝐴𝑈𝐶(𝑠), for 𝐴𝑈𝐶(𝜎) employing the 

chosen scoring mechanism [47]. 
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Utilizing the earlier mentioned surrogate loss function 

converts the goal of maximizing AUC(s) into a 

corresponding objective of minimizing RAUC(s)[48]. 

Similarly, in references [49] and[50], where AUC(s) is 

included in their objective functions, we seamlessly 

incorporate RAUC in our accurate function formulation, 

leading to the following equation: 

𝒎𝒊𝒏  
𝒘́

𝟏

𝟐
𝒘́𝑻𝒘́ + 𝜸𝑹𝑨𝑼𝑪(𝒔) (6) 

In this context, γ signifies the selected regularization 

parameter. By merging Equation 2 with Equation 6, we 

establish the optimization task for our predictive model as 

outlined below: 
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With the following notation[51]:  
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And the mathematical transformation[52]:  
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(9) 

𝑝 =
𝑁+

𝑁+ + 𝑁−
 (10) 

Where Equation 7 can then be expressed as:  
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The resolution is effortlessly derived as follows: 

𝒘́ = 𝒁́𝑇(𝒁́𝒁́𝑇 +
𝑁

𝛾
𝑨)−1𝒀́ (12) 

𝒁́ = [(𝜑′(𝒙1)
𝑇 , 0); (𝜑′(𝒙2)

𝑇 , 0), … , (𝜑′(𝒙𝑁)
𝑇 , 0)] (13) 

𝒀́ = [𝑦1
′ , 𝑦2

′ , … , 𝑦𝑁
′ ] (14) 

It's observed that both 𝒁́ and 𝑨 can be computed in 

advance. When 𝜑(𝒙𝑖) remains elusive, we assemble the 

kernel array 𝐾 utilizing the training set. Via the eigenvalue 

decomposition of 𝐾, that is, 𝑲 = (𝜆
1

2 𝐩)𝑇(𝜆
1

2 𝐩), we deduce a 

resolution for 𝜑(𝒙𝑖) , (𝑖 =  1, , , , , 𝑁),, and subsequently 

ascertain 𝜑′(𝒙𝑖), 𝒁́, and 𝑨. Hence, for any evaluation 

instance 𝑥, its judgment function is delineated as[53]: 
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𝒀́ 

(15) 

Each 𝜑(𝒙)𝑇𝜑́(𝒙𝑖)(𝑖 =  1, , , , , 𝑁) is computed employing 

Equation 16, embracing the kernel equation[54].
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(16) 

 

Within our schema, the variable 𝑥 is processed by the 

PSVM decision-maker. The verdict of the PSVM decision-



           

maker, indicating if a competitor is susceptible or not, is 

adjudicated by Equation 15. The entire learning procedure 

of the model is comprehensively detailed in Algorithm 1. 

Algorithm 1: Pseudo-code of the proposed model 

//Input:  

γ: a balancing hyperparameter 

 

//Kernel Matrix Formulation and Eigenvalue Analysis: 

Formulate the kernel matrix 𝑲 for the training data utilizing the given kernel method 

Conduct eigenvalue analysis to ascertain the solution for 𝜑(𝒙𝑖), where i is from 1 to N.  

 

// Matrix formulation 

Construct the matrix 𝑨 utilizing Equation 8, 𝜑′(𝒙𝑖),  where i covers from 1 to N, applying Equation 9, and 𝒁,́  

 

//Output:  

Ascertain the decision mechanism for a new sample 𝒙, referred to as 𝒇(𝒙), employing Equation 15 

Table 1. The parameters used for optimizing hyperparameters. 

Hyperparameter Range of parameters Type of value 

Size of batch 16 to 256 Integer 

Number of epochs 32 to 512 Integer 

γ (Balance hyperparameter) 0 to 1 Continuous 

Kernel type [Linear, Polynomial, RBF, Sigmoid] Categorical 

Feature scaling method [None, Standardization, Normalization] Categorical 

Regularization Parameter (C) 0.01 to 100 Continuous 

 
Fig. 1. Overview of applying the random critical method to convert numerical vectors into designated hyperparameter levels. This involves processes of 

modifying and combining these vectors. Subsequently, a mapping function transforms these vectors into a tailored set of hyperparameters, fine-tuned for 

model customization. This methodology facilitates evaluating and selecting numerical vectors based on their relevance and efficacy. 

 



           
3.1. Hyperparameter optimization 

Optimizing hyperparameters is critical in machine 

learning, acting as a key element that significantly improves 

model efficacy. Skillful adjustments of hyperparameters, 

including the learning rate and batch size, can enhance a 

model's prediction accuracy and optimize its training 

efficiency [55]. An optimal hyperparameter configuration 

addresses issues like overfitting and underfitting, 

promoting a robust generalization of the model to new data. 

Considering the intensive computational needs of deep 

learning models, effective hyperparameter optimization 

leads to more efficient use of resources, saving time and 

reducing costs . 

Table 1 details the hyperparameters targeted for 

optimization in this study. We assigned each 

hyperparameter a plausible range of values determined by 

consulting ranges recommended in existing machine-

learning literature related to CVDs. These predetermined 

ranges were then applied as limits during the execution of 

the DE algorithm. 

Our investigation utilizes the Random Key technique, 

initially conceived for evolutionary computation by Bean, 

for fine-tuning model settings. This method relies on a 

coding mechanism, employing an array of T numeric 

arrays, each with D attributes, labeled as 𝑝1, 𝑝2, , , , , 𝑝𝑇,  

which form a group. Every variety within this group 

symbolizes a prospective answer linked to a series of model 

settings through a stochastic fundamental translation 

function. The research aims at refining C settings, with C 

being six, as depicted in Table 1. Each setting c (from 1 to C) 

includes 𝐷𝑐  spots. 𝐷𝑐  receives the value 1 for scalar settings, 

rendering the aggregate attribute D the cumulative of all 

D_c figures. Each array, 𝑝𝑖, is divided into C sections, with 

every division holding 𝐷𝑐  spots tied to disparate setting 

values. For nominal settings, this technique associates a 

segment of the numeric array (𝐷𝑐  dimensional) with a 

specific array, 𝑀𝐴𝑃𝑐, enumerating the alternatives for the 

𝑐𝑡ℎ setting. This association is done by ordering the 

components in each division, where the premier 

component's ranking acts as a pointer to determine the 

appropriate value from 𝑀𝐴𝑃𝑐. The merit of this approach 

lies in its harmony with evolutionary procedures such as 

alteration, hybridization, and choice. It is applied directly 

to the numerical vector 𝑝𝑖, yielding results that can be 

consistently interpreted as combinations of both 

categorical and continuous hyperparameter values . 

This method is illustrated in the context of the 'number 

of layers' hyperparameter (𝐷𝑐=5), as shown in Figure 1. The 

random key comprises a series of natural numbers sorted 

by rank, crucial in aligning with a preset array of choices. 

Over time, this results in more effective decisions ascending 

in the key while less effective ones descend. This systematic 

organization aids in methodically prioritizing choices from 

most to least effectual, creating an orderly framework for 

the DE algorithm to navigate and assess. 

4. Experimental results 
This section outlines the data collection, elaborating 

on its attributes and extent as applied in our investigation. 

Subsequently, we delineate the benchmarks, clarifying the 

standards and evaluations utilized to gauge the efficacy of 

our frameworks. The part wraps up with the disclosure of 

outcomes, underscoring the principal insights from our 

scrutiny and framework assessments and deliberating their 

importance within our study aims. 

 
4.1.Dataset 

In 2012, the Zagreb Clinic for Work and Sports Health 

embarked on an extensive research endeavor, examining a 

large dataset comprising 26,002 medical examinations. 

These assessments were pivotal for athletes seeking 

clearance for participation in competitive sporting events. 

The gathered data encompassed vital health metrics such 

as sex, age, stature, body mass, resting pulse rate, arterial 

pressure, and baseline ECG readings. The results from 

these evaluations were predominantly classified into 'N' 

and 'P.' The 'N' category, representing 91.2% of the cases, 

typically reflected normal or non-critical findings, 

indicating that the athletes were in good health and fit for 

involvement in competitive sports. On the other hand, the 

'P' category, constituting 8.8% of the cases, potentially 

indicated specific medical concerns or conditions that 

required further clinical assessment or intervention. This 

comprehensive data compilation was crucial in ensuring 

athletes' welfare and physical readiness. It provided 

valuable insights into the standard health profiles and 

physiological benchmarks of individuals engaged in 

competitive sports. The breadth and depth of this research 

make it a significant resource for studies in the field of 

sports medicine and the well-being of athletes [56]. 

In the dataset, individuals were identified as either 

being at risk, with 6,507 samples or not at risk, comprising 

633 samples. We designated 70% of the total samples, 

amounting to 10,200, for training purposes and set aside 

the remainder for validation. 

 
4.2. Metrics 

Our study carefully selected essential performance 

metrics, including Accuracy, F-measure, and G-means, for 

their relevance and comprehensive evaluation capabilities 

in the context of imbalanced datasets like those 

encountered in CVD detection [57]. Accuracy, while a 



           

standard metric, offers a straightforward initial assessment 

of overall model performance by calculating the proportion 

of correctly predicted instances among the total. However, 

given the imbalanced nature of our datasets, where the 

prevalence of one class significantly outweighs the other, 

relying solely on Accuracy might be misleading. This is 

because a model could achieve high Accuracy by 

predominantly predicting the majority class while failing to 

adequately identify the minority class instances, which are 

often of greater clinical significance in CVD detection. 

To address this limitation and ensure a more balanced 

evaluation, we incorporated the F-measure, which 

harmonizes the Precision and Recall through their 

harmonic mean. This metric is particularly valuable in our 

study as it provides a more nuanced view of the model's 

ability to correctly identify positive (disease-present) cases, 

balancing its precision against its recall. This balance is 

crucial in medical diagnostics, where the cost of false 

negatives (failing to detect a disease) can be far more 

consequential than false positives [9]. 

Moreover, we employed the G-means metric, which 

evaluates model performance by considering the geometric 

mean of sensitivity (actual positive rate) and specificity 

(true negative rate). This metric is especially pertinent in 

imbalanced dataset scenarios, as it ensures that the model's 

performance is not biased towards the majority class and 

maintains a robust detection rate for the minority class, 

which, in the context of CVD detection, represents the 

actual CVD cases [12]. 

The Accuracy, F-measure, and G-means metrics are 

defined as follows:  

• Accuracy is computed as the sum of true positives 

(TP) and true negatives (TN) divided by the overall 

number of samples, as shown in the equation:  

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
 (17) 

• F-measure provides a balance between Precision 

and Recall, using their harmonic mean:  

F − measure =
2 ×  Precision ×  Recall

Precision +  Recal
 

(18) 

  

Where: 

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(19) 

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(20) 

• G-means is the geometric mean of Recall and 

Specificity, offering a balanced metric for 

imbalanced datasets: 

G − means = √Recall ×  𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 (21) 

Where:  

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

(22) 

4.3. Baseline methods 

Our innovative model, engineered for seamless 

operation on a high-capacity computing system with a 64-

bit Windows Operating System, is equipped with 

substantial resources, including 32 GB of RAM and a high-

performance 64 GB Graphics Processing Unit (GPU). This 

powerful setup is crucial for accommodating the extensive 

computational demands of the model. 

During its initial phase of training and assessment, our 

model showcased exceptional efficacy, outperforming a 

suite of six diverse machine learning algorithms[58]: 

• Support Vector Machine (SVM)[59]: SVM is a 

prominent technique in supervised learning, 

predominantly utilized for classification 

challenges. It operates by identifying an optimal 

hyperplane that effectively separates different 

class labels in a given dataset. The core strategy 

of SVM is to maximize the margin between the 

nearest data points of other classes, ensuring 

clear class distinction. 

• Naïve Bayes Classifier: This algorithm is rooted 

in probabilistic theory, applying Bayes' theorem 

with the fundamental presumption of feature 

independence. Naïve Bayes excels in handling 

vast datasets and is notably effective in 

categorization tasks in text analysis, such as 

email spam filtering, due to its simplicity and 

speed. 

• K-Nearest Neighbors (KNN)[60]: KNN is a 

straightforward, non-parametric method used 

in classification and regression. It classifies a 

new data point based on the predominant 

categories among its 'K' closest neighbors in the 

dataset, where 'K' is a user-defined number. The 

simplicity of KNN lies in its direct approach of 

considering the nearest data points for 

decision-making. 

• Random Forest [61]: This ensemble learning 

technique is primarily used for classification 

and regression tasks. Random Forest constructs 

numerous decision trees during the training 

process and integrates their outputs. For 

classification, it takes the mode of the classes 

from the trees, and for regression, the average 

of the predictions, leading to improved accuracy 

and robustness against overfitting. 

• Logistic Regression[62]: Contrary to what its 

name might imply, logistic regression is a 

classification algorithm, not a regression model. 

It's particularly adept at binary classification 



           

problems, estimating the probability that a 

given input belongs to a particular class. The 

model utilizes a logistic function to generate 

outputs ranging from 0 to 1, indicative of class 

probabilities. 

• Decision Tree[63]: This model operates 

similarly to a flowchart, with internal nodes 

representing tests on features, branches 

showing the results of these tests, and leaf 

nodes indicating class labels. Decision Trees are 

versatile, being applicable for both 

classification and regression tasks. They are 

intuitive, allowing for easy visualization and 

interpretation of the decision-making process. 

Moreover, we have developed a variant of our 

proposed model, i.e., Proposed w/o Optimization, which 

ignores the DE algorithm for hyperparameter optimization.

 
Fig. 2. Comparative evaluation of various models' performance indicators. 

 
4.4. Main results 

The insights gleaned from Figure 2 emphatically 

validate the heightened efficacy of our novel model when 

juxtaposed against conventional machine learning 

methodologies. It manifests pronounced advancements in 

pivotal performance indicators such as the F-measure and 

geometric mean. These metrics are vital for gauging a 

model's comprehensive effectiveness, particularly in 

balancing recall and precision. Notably, our model 

demonstrates a marked reduction in error margins, 

outperforming standard models by 9% in F-measure and 

7% in geometric mean. This underscores its enhanced 

predictive accuracy and steadfast reliability under diverse 

scenarios . 

A detailed analysis indicates that while traditional 

approaches like Naïve Bayes, KNN, and Logistic Regression 

achieve notable accuracy, they fall short in precision and 

recall compared to our innovative model. This aspect is 

especially critical in scenarios involving imbalanced 

datasets. For instance, Naïve Bayes, despite its accuracy of 

0.830, lacks the precision exhibited by our model, 

potentially leading to a higher occurrence of false positives. 

Similarly, despite its significant accuracy, recall, and F-

measure relative to other baseline models, the Decision 

Tree model does not reach the comprehensive proficiency 

demonstrated by our proposed model. Its diminished 

geometric mean suggests a difficulty in handling datasets 

with skewed distributions. 



           

Further, when contrasting our model with the version 

without optimization (Proposed w/o Optimization), there 

is a conspicuous 15% dip in error rates in favor of the 

optimized version. This stark difference accentuates the 

critical role of the sophisticated Differential Evolution (DE) 

technique in elevating the model's overall performance. 

The implementation of DE is presumably instrumental in 

fine-tuning hyperparameter optimization, thereby 

augmenting the model's capability to discern complex 

patterns within the dataset. This enhancement is a 

testament to the value added by meticulous optimization in 

developing machine learning models.

 
Fig. 3. The overlapping of roc curves across different machine learning techniques highlights the AUC scores, including the proposed model. 

 

Illustrated in Figure 3 are the Receiver Operating 

Characteristic (ROC) curves for various machine learning 

techniques, as detailed in Figure 2. These curves delineate 

the relationship between each method's actual positive rate 

(TPR) or sensitivity and the false positive rate (FPR), 

essentially one minus specificity. The Area Under the Curve 

(AUC) is a pivotal measure of the classifiers' cumulative 

proficiency. The AUC values paint a picture of the 

differential predictive prowess inherent in each method. A 

classifier with an AUC approaching 1 indicates its elevated 

accuracy in distinguishing between classes, whereas an 

AUC hovering near 0.5 implies a performance level 

comparable to random guessing. 

The graph highlights that our advanced model 

outstrips its counterparts, achieving the highest AUC and 

confirming its superior capability in categorizing positive 

and negative instances precisely. This is followed by the 

decision tree and logistic regression methods, which exhibit 

respectable AUC scores, signifying their commendable 

classification abilities. In contrast, methodologies like SVM 

and random forests manifest somewhat intermediate AUC 

scores. While these scores exceed the baseline threshold of 

0.5, they imply a comparative deficiency in these methods' 

capacity to discriminate between classes, especially against 

the backdrop of the more productive models. 

The observed variance in AUC scores can be attributed 

to many factors, ranging from the intrinsic characteristics 

of the data, the complexity and peculiarities of the 

individual models, to the fundamental limitations inherent 

in the algorithms themselves. Such differences underscore 

the necessity of careful model selection and customization 

by the specific demands and nuances of the dataset. 

Understanding these distinctions is crucial in machine 

learning, as it aids in tailoring solutions that are optimally 

aligned with the desired outcomes and the inherent 

challenges of the data. 

To verify the dependability of our algorithm and avert 

the risk of excessively tailoring it to the training set at the 

expense of its ability to perform well on unseen data, Figure 

4 offers a visual depiction. This illustration delineates the 

progression of the hinge loss values for both the training 

and validation sets throughout the learning phase. The 



           

methodology entails calculating the loss after each forward 

propagation throughout the training phase, with a 

subsequent backward propagation to adjust the algorithm's 

parameters after every training cycle. The loss 

corresponding to the validation set is determined following 

each training cycle through forward propagation without 

modifying the algorithm's parameters. The ideal outcome is 

a downward trend in the loss metrics for training and 

validation, leveling off at a minimal value, which would 

signify the algorithm's adeptness at acquiring knowledge 

and its proficiency in applying it to unfamiliar data. In 

contrast, a situation where the training loss diminishes 

steadily but the validation loss starts to increase would 

signal overfitting. This would mean that the algorithm 

needs to become more specialized to the quirks and 

irrelevant details of the training set, potentially impairing 

its effectiveness on new data. Hence, vigilant observation of 

the loss trends during training and validation is crucial to 

ensure the algorithm strikes a proper balance between 

learning effectively from the training set and maintaining 

its generalization capacity.

 
Fig. 4. Visual depiction of hinge loss trends for training and validation sets in the model. 

 
Fig. 5. The outcomes of diverse metaheuristic algorithms. 

 



           

4.4.1. Analyze of the DE algorithm 

In our forthcoming study, we aim to evaluate the 

performance of our DE algorithm relative to various other 

metaheuristic optimization techniques. The primary goal is 

to apply diverse metaheuristic strategies for 

hyperparameter optimization while keeping all other 

aspects of the model constant. We have included six 

algorithms in this comparison: Artificial Bee Colony (ABC) 

[21], Firefly Algorithm (FA)[64], Bat Algorithm (BA)[65], 

Cuckoo Optimization Algorithm (COA)[66], and Grey Wolf 

Optimization (GWO)[67]. The results of this comparative 

analysis are presented in Figure 5. The data indicates that 

the DE method achieves a remarkable 22% decrease in 

error rates compared to the ABC algorithm, highlighting its 

enhanced efficiency. Moreover, the ABC algorithm 

demonstrates superior performance over other algorithms 

like FA, GWO, and BA, yielding more advantageous 

outcomes. These findings suggest that our developed 

method surpasses the existing algorithms in accuracy and 

robustness.

 
Fig. 6. Progression of the objective function across consecutive iterations using the DE algorithm. 

 

Figure 6 visually presents the progression of the 

objective function during consecutive iterations within the 

DE process. The x-axis displays the number of iterations or 

generations, while the y-axis shows the corresponding 

values of the objective function. This layout provides a clear 

insight into the functional mechanisms of the algorithm. A 

detailed analysis of Figure 6 uncovers significant patterns. 

The initial phases exhibit marked variability in the objective 

function values, underscoring the DE algorithm's 

exploration stage. During this period, the algorithm 

conducts an extensive search across the solution landscape, 

aiming to avoid premature settling at local optima and to 

pinpoint areas of potential. As the process moves forward, 

a discernible trend toward stabilization becomes apparent. 

The variations in the objective function values start to 

decrease, indicating a more focused search by the 

algorithm. This phase involves capitalizing on the most 

promising solutions identified thus far and enhancing the 

search's depth to achieve the optimal outcome. Monitoring 

for any extended phases of stagnation in the objective 

function values is crucial, as these might signal that the 

algorithm has plateaued at a local maximum. Such 

instances may require modifying the algorithm's 

parameters or integrating it with additional methods to 

effectively boost its ability to explore and navigate the 

solution space. 



           

 
4.5. Discussion  

This article used the ImAUC-PSVM method and the 

DE algorithm for hyperparameter optimization to detect 

CVDs. 

Several critical considerations underpin the choice of 

the ImAUC-PSVM for detecting CVDs. Firstly, CVDs 

present a unique challenge due to their complex nature and 

the often-imbalanced nature of clinical datasets, where 

non-occurrence cases significantly outnumber instances of 

disease occurrence. The ImAUC-PSVM directly addresses 

this imbalance by incorporating AUC maximization into the 

objective function, a metric particularly adept at handling 

skewed data distributions. This integration is pivotal as 

AUC provides a more nuanced assessment of model 

performance across different threshold settings, making it 

more reliable in clinical settings where false negatives can 

have profound implications. Secondly, by maintaining the 

structural integrity of the standard PSVM, ImAUC-PSVM 

ensures the retention of PSVM's inherent benefits. This 

includes the model's capacity to efficiently process 

incremental updates, a feature crucial for managing the 

dynamic progression of CVDs. The ability to handle rapid 

updates allows for more agile and timely responses in 

clinical applications, enhancing the model's practical 

utility. Thus, selecting ImAUC-PSVM is a strategic decision 

to optimize model performance for cardiovascular disease 

diagnosis's specific intricacies and challenges. 

Incorporating the DE algorithm into our framework is 

a strategic choice to enhance the model's performance in 

navigating complex hyperparameter spaces. The nature of 

ImAUC-PSVM, with its nuanced approach to handling 

imbalanced datasets and its sophisticated model structure, 

necessitates precise hyperparameter tuning to achieve 

optimal performance. DE is known for its efficiency in 

exploring and exploiting diverse solution spaces, making it 

an ideal choice for our model. Its ability to simultaneously 

consider multiple potential solutions and evolve them 

through generations allows for a more comprehensive 

search of the hyperparameter space than traditional 

optimization methods. This capability is precious in 

medical applications like CVD detection, where the 

accuracy and robustness of the model can have significant 

implications on patient outcomes. Furthermore, DE's 

flexibility in adapting to various types of objective functions 

and constraints aligns well with the complex nature of 

healthcare data. By integrating DE, we aim to refine the 

model's performance, ensuring that it achieves high 

accuracy and maintains consistency and reliability across 

various scenarios, thereby enhancing its applicability in the 

dynamic field of healthcare analytics and patient care. 

The theoretical implications of our research are 

significant, considering the pervasive challenge of CVD 

affecting the heart and vascular system worldwide. Our 

introduction of the ImAUC-PSVM leverages the core 

principles of conventional PSVM to enhance CVD 

detection. The essence of ImAUC-PSVM lies in its adept 

integration of AUC maximization into its objective 

function, streamlining the model by minimizing the need 

for extensive parameter tuning. This aspect mainly benefits 

imbalanced data sets, promoting an effective training 

regimen. Theoretically, ImAUC-PSVM mirrors the 

structural solution of traditional PSVM, inheriting its 

advantages, especially in dynamic CVD conditions that 

necessitate quick, incremental updates. Our 

methodological innovation extends to applying a 

customized DE algorithm for hyperparameter 

optimization, precisely navigating the intricate parameter 

landscape. Tested on a robust medical dataset from a 2012 

survey involving 26,002 participants, including critical 

health metrics, the ImAUC-PSVM demonstrated 

remarkable accuracy in CVD identification. These findings 

validate the model's efficacy and hint at its potential to 

reshape the domain of healthcare analytics and patient 

management by providing a scalable and adaptable 

diagnostic tool. 

The limitations of the proposed model are as follows: 

• Data Dependency and Generalizability: One 

limitation of the ImAUC-PSVM model is its 

reliance on the specific characteristics of the 

dataset it was trained on. Although the model was 

validated using a comprehensive medical survey of 

26,002 athletes, this dataset predominantly 

represents a particular population segment. 

Athletes generally have different physiological 

profiles than the general population, including 

non-athletes and older people, potentially limiting 

the model's generalizability[68]. Their model may 

perform less effectively when applied to broader, 

more diverse populations. To mitigate this, further 

validation with datasets encompassing a more 

comprehensive range of demographic and health 

characteristics is necessary to confirm the model's 

efficacy across various groups[69]. 

• Complexity in Hyperparameter Optimization:  

Integrating the DE algorithm, while beneficial for 

navigating complex hyperparameter spaces, also 

introduces complexity [23]. DE relies on a fine-

tuned balance of exploration and exploitation to 

optimize hyperparameters, which can be time-

consuming and computationally expensive. If not 

carefully managed, this could lead to longer 



           

training times and increased computational 

resources, especially in large-scale applications. A 

potential solution is exploring other optimization 

algorithms that offer a better balance between 

performance and computational efficiency or 

implementing parallel computing techniques to 

expedite the optimization process [24]. 

• Sensitivity to Imbalanced Data: While the ImAUC-

PSVM is designed to handle imbalanced datasets, 

its performance is inherently tied to the extent of 

this imbalance. In cases of extreme imbalance, 

where positive examples (CVD cases) are vastly 

outnumbered, the model may still struggle to 

identify these rare events accurately. This could 

lead to higher false negatives, particularly critical 

in medical diagnostics. One approach to address 

this might involve implementing additional 

techniques like synthetic data generation (e.g., 

SMOTE) [13] to artificially balance the dataset, 

thereby improving the model's ability to learn from 

underrepresented classes. 

• Responsiveness to Rapid Incremental Updates: 

While adept at handling progressive CVD scenarios 

with rapid incremental updates, the model's design 

may face challenges in real-time responsiveness. In 

real-world healthcare settings, where data is 

continuously evolving, and immediate decision-

making is often required, the model's ability to 

quickly adapt to new information is crucial [3]. Any 

lag in integrating and responding to new data can 

impact its practical utility. Enhancing the model's 

incremental learning capabilities through online 

learning algorithms or stream processing 

techniques could be explored to ensure the model 

remains agile and responsive in dynamic clinical 

environments [2]. 

5. Conclusion 

This study presents a unique approach for learning 

from imbalanced data called the ImAUC-PSVM, which 

builds upon the conventional PSVM framework to detect 

CVDs. The ImAUC-PSVM approach comes with several 

notable strengths: 1) It adeptly embeds AUC maximization 

into its core objective function, streamlining the model by 

minimizing the necessity for extensive parameter tuning, 

thus enhancing its suitability for imbalanced data sets with 

a more efficient training methodology, 2) Our theoretical 

analysis indicates that ImAUC-PSVM upholds the 

fundamental solution architecture of the classic PSVM. 

This attribute allows it to leverage the advantages of PSVM, 

particularly useful in rapidly evolving CVD cases requiring 

quick incremental updates. Additionally, we have 

integrated a customized Differential Evolution (DE) 

algorithm, expertly crafted to traverse the intricate 

hyperparameter landscape effectively. We thoroughly 

tested the model's efficacy using a comprehensive 2012 

medical study dataset involving a large group of 26,002 

athletes. Vital metrics like height, weight, age, gender, 

blood pressure, and resting heart rate were carefully 

recorded. This methodology marks a significant step 

forward in cardiovascular diagnostics and presents a 

scalable and flexible solution that could have far-reaching 

impacts on healthcare analytics and patient treatment 

strategies. 

Building on the promising foundation laid by our novel 

ImAUC-PSVM approach for CVD detection, our future 

research directions are geared towards further enhancing 

the algorithm's robustness and exploring its applicability 

across a broader range of medical conditions and 

healthcare scenarios. Initially, we plan to focus on 

algorithmic refinements, particularly optimizing the DE 

algorithm to improve hyperparameter selection efficiency, 

potentially integrating adaptive or machine learning-based 

hyperparameter tuning methods over the next two years. 

Concurrently, we aim to extend the application of ImAUC-

PSVM to other imbalanced datasets within healthcare, such 

as rare diseases or conditions with subtle symptomatic 

expressions, over the next three to five years. 

Another pivotal direction involves incorporating 

multi-modal data sources, including genomic, proteomic, 

and lifestyle data, to enrich the model's predictive 

capabilities. This multidimensional expansion, planned for 

the next five to seven years, seeks to harness the full 

spectrum of available patient data, offering a more holistic 

approach to disease prediction and management. 

Additionally, we will explore integrating our model into 

real-time healthcare monitoring systems, leveraging 

wearable technology and IoT devices to facilitate 

continuous health status assessment and early 

intervention. 

Parallel to these technical enhancements, we 

anticipate collaborative research with interdisciplinary 

teams, including clinicians, biomedical engineers, and data 

scientists, to ensure that our developments align with 

practical healthcare needs and ethical standards. This 

collaborative approach will also open avenues for applying 

our model beyond cardiovascular health, potentially 

transforming predictive analytics in various medical 

domains. Through this structured yet adaptable roadmap, 

we aim to solidify the role of ImAUC-PSVM in advancing 

healthcare analytics and patient care, ultimately 



           

contributing to the broader goal of personalized and 

preventive medicine. 
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