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Highlights 
 

➢ Focus on enhancing transient stability in DFIG wind energy systems amid renewable energy integration. 

➢ Introduction of passive fault current limiter to improve DFIG system stability without active controllers. 

➢ Novel algorithm for calculating optimal fault current limiter resistance, ensuring voltage stability during faults. 

➢ Simulation-based evaluation using MATLAB/Simulink, highlighting effectiveness in maintaining stability during fault 
scenarios. 

 

Article Info  Abstract 

This research addresses the challenge of grid stability when integrating renewable energy, 
especially wind power. It focuses on enhancing transient stability in doubly fed induction generator 
(DFIG) wind energy systems using advanced strategies like fault current limiters and deep learning. 
The study includes a thorough analysis of fault scenarios, simulations, and solution evaluations, 
highlighting the crucial need for maintaining stability in renewable energy grids. As wind energy 
demand rises, optimizing system performance is vital. Many wind turbines rely on DFIGs, 
necessitating robust fault ride-through. A passive fault current limiter is introduced to enhance 
DFIG system transient stability. This limiter, devoid of active controllers, offers intrinsic resilience. 
The research introduces a novel algorithm to calculate optimal fault current limiter resistance, 
maintaining voltage within ±10% of the reference level. Transient stability is evaluated through 
simulations involving symmetric and asymmetric faults, incorporating deep learning. 
MATLAB/Simulink confirms the efficacy of the proposed limiter and algorithm in boosting 
transient stability for DFIG-based wind energy systems. The study underscores the role of fault 
current limiters and deep learning in seamlessly integrating renewable energy into power grids. 
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1. Introduction 
The relentless pursuit of sustainable energy solutions 

has thrust renewable sources, notably wind power, into the 

spotlight of modern energy systems [1]. Among the array of 

wind energy conversion technologies, doubly fed induction 

generator (DFIG)-based wind turbine systems have 

garnered substantial attention due to their superior 

controllability and efficiency [2]. However, the integration 

of wind power into conventional power grids introduces 

multifaceted challenges, with transient stability emerging 

as a pivotal concern that demands innovative solutions [3]. 
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Transient stability, often referred to as the ability of a 

power system to maintain synchronous operation during 

transient disturbances such as faults, is an indispensable 

prerequisite for the reliable and uninterrupted operation of 

the grid. For DFIG-based wind turbine systems, which 

inherently possess a dual-fed nature and intricate control 

mechanisms, transient stability becomes a critical focal 

point [4]. The inability to ensure transient stability can 

culminate in disconnections and cascading failures, thereby 

jeopardizing the overall grid stability. 
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Recognizing the significance of addressing transient 

stability challenges, this study embarks on a journey to 

explore groundbreaking solutions by harnessing the 

potential of deep learning techniques. Deep learning, an 

emerging paradigm within artificial intelligence, empowers 

systems with the capability to learn complex patterns and 

representations directly from data, enabling them to make 

intelligent decisions and predictions. 

Amid the gamut of control strategies and devices 

proposed to bolster transient stability in DFIG systems, the 

efficacy of these solutions in effectively managing a 

spectrum of fault scenarios remains a persistent concern. 

The intricacies and dynamism of modern power grids 

necessitate adaptive and intelligent strategies capable of 

efficiently handling transient stability challenges, especially 

in the presence of evolving grid conditions. 

At its core, this study endeavors to unravel the 

potential of deep learning techniques in augmenting 

transient stability within DFIG-based wind turbine 

systems. By harnessing the prowess of neural networks, the 

research aims to develop an intelligent system endowed 

with the foresight to predict and mitigate transient stability 

issues in real-time. This innovative pursuit seeks to fortify 

the adaptability and resilience of wind power integration, 

aligning it harmoniously with the dynamic nature of 

modern power grids. 

As this paper unfolds, it meticulously dissects the 

application of deep learning techniques to enhance 

transient stability in DFIG-based wind turbine systems. It 

further delves into the intricacies of the methodology 

employed, the intricately designed experimental setup, the 

discerned results, and the comprehensive discussions that 

follow. Through this multifaceted exploration, the study 

underscores the transformative potential of deep learning 

as an avant-garde solution, poised to shepherd wind power 

integration into the realm of heightened reliability and 

harmonious coexistence within intricate power networks. 

2. Literature Review 
The integration of renewable energy sources, 

particularly wind power, into power grids necessitates 

addressing challenges related to transient stability [5]. In 

the realm of DFIG systems, researchers and engineers have 

explored various methods to enhance transient stability 

and ensure the reliable operation of wind energy 

conversion systems. 

Existing Methods for Enhancing Transient Stability 

in DFIG Systems: Numerous strategies have been proposed 

to improve transient stability in DFIG-based wind turbine 

systems. These include the utilization of crowbar systems, 

DC choppers, parallel capacitors, and various Flexible AC 

Transmission System (FACTS) devices. Crowbar systems 

offer protection by diverting excessive currents during 

faults, while DC choppers and parallel capacitors mitigate 

voltage fluctuations. FACTS devices, such as Thyristor-

Controlled Series Compensator (TCSC) and 

Superconducting Fault Current Limiter (SFCL), contribute 

to stability enhancement by controlling voltage and current 

dynamics [6], [7], [8], [9]. 

Introduction to Deep Learning and Its Applications in 

Power Systems: Deep learning, a subset of machine 

learning, has gained significant attention for its ability to 

process vast amounts of data and derive complex patterns 

and insights. In power systems, deep learning techniques 

have demonstrated potential in various applications, 

including load forecasting, fault detection, and 

optimization. Deep neural networks (DNNs), convolutional 

neural networks (CNNs), and recurrent neural networks 

(RNNs) are some of the key architectures used to model 

intricate power system dynamics [10], [11], [12], [13], [14]. 

Gap Identification: The Need for Integrating Deep 

Learning with DFIG Systems: Despite the progress in 

transient stability enhancement methods, several 

challenges persist. Existing approaches often rely on 

predefined control strategies that might not adapt well to 

dynamic fault scenarios and changing grid conditions. This 

gap underscores the need for more adaptable and 

intelligent solutions that can dynamically predict and 

mitigate transient stability issues [15], [16], [17], [18]. 

Deep learning presents a promising avenue to address 

this gap. By harnessing the power of deep neural networks, 

DFIG systems could attain real-time predictive capabilities, 

enabling them to anticipate disturbances and 

autonomously take corrective actions. The integration of 

deep learning with DFIG systems holds the potential to 

revolutionize transient stability enhancement by providing 

a self-learning, data-driven, and adaptive approach that 

complements existing techniques. 

The subsequent sections of this paper delve into the 

methodology adopted to integrate deep learning with DFIG 

systems, detailing the DFIG Structure, fault current limiter 

concept, deep learning and implementation of the proposed 

model. The experimental setup, results, and discussions 

shed light on the transformative potential of deep learning 

in enhancing transient stability, contributing to the broader 

goal of achieving a seamless and resilient integration of 

renewable energy sources into modern power grids. 

3. Methodology Concepts 
3.1. DFIG Structure 

The double feed induction generator (DFIG) model is 

essentially an induction machine with a three-phase rotor. 



           

In machines, alternating current (AC) flows through the 

stator, which in turn powers the rotor windings. The initial 

configuration of a DFIG-based wind turbine system is 

shown in Figure 1. In this configuration, the stator is 

connected directly to the grid via a transformer and the 

rotor is connected to the busbar DC using AC-DC, DC-DC. 

AC converters and three-phase voltage pulse width 

modulation (PWM) converters - rotor side converters 

(RSC) and upstream converters (GSC). In this paper, 

DFIG's RSC and GSC controllers use vector control, a 

technique described in[19], [20]. 

One of the main reasons DFIG is used in wind turbines 

is its ability to provide the best performance for different 

wind turbines. Also, a small generator is needed to control 

the generator. As shown in Figure 1, the power converter 

usually only accounts for 25% to 30% of the system power 

rating [21]. Therefore, the energy loss in the electric 

generator is reduced compared to the full generator system. 

In addition, the use of these energy converters reduces the 

overall cost.

 
Fig. 1. DFIG Generators with Converters 

3.1.1. Mathematical Modeling of DFIG 

A doubly fed induction generator (DFIG) can be 

represented using a T-pattern for a given output. The 

steady-state equivalent circuit of the DFIG system is shown 

in figure 2 [22] where all parameters and variables are unit 

values.

 
Fig. 2. DFIG Equivalent Circuit 

Using Kirchhoff's voltage law in both circuit loops, the 

steady-state characteristics of DFIG can be expressed as 

follows [22]: 
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Where: 

𝑋𝑠 = 𝑋𝑠1 + 𝑋𝑚 , 𝑋𝑟

= 𝑋𝑟1

+ 𝑋𝑚 

(2) 

 

This mathematical model provides essential insights 

into the steady-state behavior of the DFIG system. 

3.2. Fault Current Limiter 
3.2.1. Configuration of Resistance-Based Fault 

Current Limiter 

The resistance-based fault current limiter is a hybrid 

of a unidirectional fault current limiter and a resistor, as 

depicted in Figure 3. It employs a low-inductance coil to 

cool down excessive currents and suppress spark 

formation. The resistance of the coil, denoted as RSC, varies 

with the current intensity. During normal system 

operation, the resistance of RSC is negligible. A 

unidirectional rectifier, formed by four diodes (D1-D4) per 

phase, enables the superconductor to operate near DC 

current conditions. This rectifier structure assists in 

reducing AC losses in the superconductor, subsequently 

enhancing system efficiency. 
3.2.2. Operation of the Resistance-Based Fault 

Current Limiter 



           

In a current limit-based protection, half-cycle of 

current (ILine) flows through path D1-RSC-LSC-D3, and 

the other half-cycle flows through path D2-RSC-LSC-D4. 

Therefore, the current flowing through the 

superconducting coil (ISFCL) is unidirectional. Although 

unidirectional rectifiers exhibit losses, it has been reported 

that the use of resistor-based current limiters can increase 

efficiency while taking losses into account [18-17].

 
Fig. 3. Resistance-Based DC SFCL Topology 

3.3. Deep Learning 

Temporal features from time series data, such as 

current and voltage signals, are often extracted using RNN 

and LSTM networks. These temporal features are used in 

the hidden layers to identify, classify, and localize faults. 

Although some experimentation has been done to improve 

performance through different architectures and 

hyperparameters, sequence models have remained the 

primary approach  [23]. 

Recurrent neural networks (RNNs) are a type of neural 

network that utilize temporal information from input data 

and learn temporal patterns by establishing connections 

between hidden nodes over time. The architecture of an 

RNN, shown in Figure 3, creates a directed graph that 

shares parameters across time steps. Unlike traditional 

feedforward neural networks, RNNs can learn sequential 

information from time series input data by using loops to 

maintain continuity of information within their directed 

graph. At each time step, an RNN node, such as node A in 

Figure 3, receives input Xt and generates the hidden node 

output ht. The loop in the RNN allows information to be 

propagated from one time step to the next within its 

directed graph.

 
Fig. 3. Unrolled RNN diagram. 

The hidden node value at time step t, denoted by ht, 

can be expressed as a function f: 

ℎ𝑡 = 𝑓(ℎ𝑡−1, 𝑥𝑡; 𝜃) (3) 

That takes the previous hidden state ht-1 and the input 

at time t, xt, as well as the parameters θ. In the basic RNN 

architecture with a shared hidden node, the equations for 

st, ht, and at are given by Equations 4, 5, and 6, respectively 

[24].  

𝑠𝑡 = 𝑊ℎ𝑡−1 + 𝑈𝑥𝑡 + 𝑏ℎ (4) 

ℎ𝑡 = tanh⁡(𝑠𝑡) (5) 

𝑎𝑡 = 𝑉ℎ𝑡 + 𝑏𝑜  (6) 

In the context of an RNN, U and W represent the input 

and hidden weights, respectively, and st is the sum of input 

weights and hidden information. To compute the value of 

ht at time step t, st is passed through the hyperbolic tangent 

function. The resulting value of ht is then used to compute 

the output of the RNN at time step t, which is represented 

(figure 4).



           

 
Fig. 4. Functioning of RNN network 

The hidden node in RNNs receives both the current 

input and the previous hidden state, allowing the network 

to remember past information for improved performance 

in time-dependent tasks. After examining the losses and 

training the network with supervised learning, 

backpropagation is used. However, training RNNs can be 

challenging due to the vanishing gradient problem, caused 

by information loss over multiple time steps. This led to the 

development of RNN networks with methods to control 

information flow between time steps. LSTM networks, 

which use memory cells to retain temporal information 

over long periods, are a popular solution to this problem. 

Unlike RNNs, LSTM nodes have multiple gate layers that 

control the flow of information into and out of the memory 

cell. At each time step, an LSTM node receives three inputs: 

the current input, the previous hidden state, and the 

previous memory cell. The LSTM node produces both an 

output and a new memory cell, updating its memory based 

on the incoming information. To understand how memory 

updates occur in LSTM, we can examine the gate layers, as 

shown in Figure 5.

 
Fig. 5. A visualization of an LSTM network with four neural gates. 

The forget gate layer is responsible for erasing the 

information that is stored in Ct-1. To achieve this, the gate 

takes input data, the previous layer's output, and a bias 

term, bf, and applies the sigmoid activation function to 

generate values ranging between 0 and 1. The forget gate 

value ft and the input memory cell value are then updated 

by multiplying them element-wise with the input gate, ⊗, 

located on the top left of the diagram. 

𝑓𝑡 = σ(𝑊𝑓 , [ℎ𝑡−1, 𝑥𝑡]) + 𝑏𝑓 (7) 

The input gate layer in an LSTM network is 

responsible for determining the amount of new information 

that should be stored in the memory state Ct. It is 

sometimes referred to as the input gate memory layer 

because it regulates the influence of the current node's 

memory on the memory cell. The layer utilizes the sigmoid 

activation function to generate a value between 0 and 1, 

which controls the level of memory contribution to the 

memory cell at the current time step. 

𝑖𝑡 = σ(𝑊𝑖 , [ℎ𝑡−1, 𝑥𝑡]) + 𝑏𝑖 (8) 

The memory gate layer is responsible for generating 

candidate memory values for the current node at time t, and 

it is the second layer in the LSTM architecture. It takes 

input data, the output of the previous hidden layer, and the 

output of the candidate memory value that has passed 

through the hyperbolic tangent (tanh) activation function. 

This layer generates a new candidate memory that can be 

stored in the memory cell state. 

𝐶̃𝑡 = tanh(𝑊𝑐 , [ℎ𝑡−1, 𝑥𝑡]) + 𝑏𝑐 (9) 

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶̃𝑡 (10) 

The output gate layer is the last gate layer in an LSTM 

network. Its primary function is to decide which 

information from the memory cell Ct should be sent to the 

output node ht, taking into account the input data xt and the 

previous hidden layer output ht-1. The output gate layer 

applies the sigmoid function to its input and the hyperbolic 



           

tangent function (tanh) to the memory cell to determine the 

current output value of the LSTM node. 

𝑂𝑡 = σ(𝑊𝑜 , [ℎ𝑡−1, 𝑥𝑡]) + 𝑏𝑜 (11) 

ℎ𝑡 = 𝑂𝑡 ∗ tanh⁡(𝐶𝑡) (12) 

Compared to RNN networks, LSTM networks have an 

advantage in learning long-term dependencies from 

temporal input data, as well as in overcoming the issue of 

vanishing gradients that can occur during backpropagation 

through the memory cells. The memory gate layer and 

sigmoid-based functions in LSTM networks allow for 

improved control over memory updates in the memory cell, 

which can remain constant without affecting the output of 

the LSTM node at time step t by taking a value of 0 in the 

output layer. As a result, gradients can continue to flow 

backwards during training without becoming zero or 

infinite over time steps. This ability of LSTM networks to 

retain a long-term short-term memory cell makes them 

superior to RNN networks for certain applications. 

CNNs are a specific type of neural network that employ 

the backpropagation algorithm to optimize the cost 

function by adjusting the network's parameters. What 

distinguishes CNNs from conventional backpropagation 

networks is the use of local receptive fields, shared weights, 

pooling, and layer combinations. The structure of a CNN is 

inspired by the architecture of the animal visual cortex, 

with neural connections modeled after the visual cortex. 

CNNs focus on local spatial correlations and employ local 

connection patterns between neurons in adjacent layers. 

CNNs are unique in their ability to process data using 

multiple layers of arrays and have numerous applications, 

including image recognition, face detection, and power 

system fault detection. Unlike other neural networks, CNNs 

take input as a two-dimensional array and directly operate 

on images without focusing on feature extraction. They are 

trained using the backpropagation algorithm, and their 

smaller parameter requirements make training easier 

compared to other frameworks. This reduced memory 

usage also enables larger and more powerful networks to be 

trained. While CNNs are primarily used in the visual field, 

some extensions to CNN have been explored to handle 

video classifications with increased complexity due to the 

time dimension. 

4. Proposed Algorithm 
4.1.Utilizing Deep Learning for Enhanced 

Transient Stability 

Amidst disturbances within the DFIG system, 

encompassing line voltage, line current, DC link voltage, 

and active/reactive power, significant perturbations arise. 

Conventionally, auxiliary control devices address these 

fluctuations. However, the resistance-based fault current 

limiter (FCL) emerges with a primary advantage – the 

elimination of the need for additional DC condition control. 

Uniquely, this FCL seamlessly transitions between 

superconducting and non-superconducting states while 

serially integrating into the system. This adaptability holds 

steadfast during simulations, even as the resistance value 

(RSC) undergoes alterations [23]. The crux of our 

methodology lies in the introduction of a novel algorithm 

for determining the optimal RSC value within the power 

system framework (refer to Figure 5). Compliance with 

IEEE 1159 standards mandates the preservation of desired 

voltage within 10%± of nominal value during symmetric 

and asymmetric faults [24]. Furthermore, electronic 

equipment safety necessitates the voltage stability limit to 

remain within 10%± of nominal voltage [25]. Therefore, the 

choice of resistance for the FCL is meticulously calibrated 

to sustain voltage within the designated 10%± range of 

nominal voltage during fault occurrences. 

Deep learning techniques, seamlessly integrated into 

the proposed algorithm, endow the control strategy with 

adaptive capabilities, allowing dynamic adjustments based 

on real-time data. This integration enables the algorithm to 

continuously optimize the resistance value, fine-tuning it to 

precisely match the fault scenario, fault type, and system 

conditions. The deep learning algorithm leverages the 

inherent power of neural networks, enabling the FCL to 

respond swiftly and effectively to diverse fault scenarios. 

In summary, the utilization of deep learning 

techniques within our approach not only enhances the 

FCL's effectiveness but also empowers the system to adapt 

dynamically to evolving fault conditions. This synthesis of 

advanced control strategies and cutting-edge technology 

showcases the potential to revolutionize transient stability 

enhancement in DFIG systems, fostering greater grid 

resilience and renewable energy integration.[26]



           

 
Fig. 5. Flowchart of the Proposed Algorithm for Optimal Determination of Resistance Value in the Resistance-Based Fault Current Limiter. 

4.2. Leveraging Deep Learning for Enhanced 
Fault Current Limiter Operation 

1. Fault Occurrence and Deep Learning 

Kickstart: The initiation of Fault Current Limiter 

(FCL) operation transpires when a fault emerges 

within the DFIG system, triggered by various 

anomalies such as short circuits or line outages. 

Deep learning technologies form the core of fault 

detection, utilizing advanced sensors to recognize 

abnormal current patterns surpassing preset 

thresholds. 

2. FCL Activation with Deep Learning: Deep 

learning algorithms drive the intelligent activation 

of FCL. Sensors, equipped with neural networks, 

are primed to not only detect faults but also classify 

them swiftly and accurately based on the intricate 

analysis of fault current waveforms. This smart 

decision-making process ensures an efficient 

response. 

3. Fault Type Determination with Neural 

Precision: Employing deep learning's pattern 

recognition capabilities, the FCL swiftly categorizes 

faults with exceptional accuracy. Symmetrical 

faults with their characteristic sinusoidal 

waveforms are distinguished from asymmetrical 

faults, which exhibit non-sinusoidal patterns. Deep 

learning ensures rapid and precise fault 

classification. 

4. Adaptive Resistance Application Enhanced 

by Deep Learning (Symmetrical Fault): In 

cases of symmetrical faults, where balance is the 

key, deep learning algorithms dynamically adjust 

the FCL's resistance. This adaptability, driven by 

neural networks, optimizes resistance levels in 

real-time, preventing excessive current flow and 

minimizing system damage. 

5. Deep Learning-Driven Resistance 

Optimization (Asymmetrical Fault): Deep 

learning's real-time adaptability shines when 

dealing with asymmetrical faults. Neural 

algorithms consider fault type, magnitude, and 

specific DFIG parameters to continually optimize 

resistance. This fine-tuned control ensures fault 

current is limited while safeguarding DFIG system 

stability. 

6. Uninterrupted Vigilance with Deep 

Learning: Deep learning's continuous monitoring 

capabilities keep the FCL actively engaged 

throughout fault events. Neural networks track 

fault current dynamics, dynamically adjusting 

resistance, and mitigating fault impact as needed. 

This unyielding vigilance minimizes escalation and 

system instability. 

7. Seamless Fault Clearance in Deep Learning 

Environment: When fault clearance is required, 

typically via a circuit breaker, deep learning 

algorithms ensure a smooth transition. Neural 

control assists in the precise interruption of the 

electrical circuit, safely isolating the faulted 

segment and facilitating a swift return to normal 

operating conditions. 

The FCL's pivotal role in enhancing transient stability 

within DFIG wind turbine systems is magnified by the 

incorporation of deep learning. By harnessing deep 

learning's analytical power for fault detection, 

classification, and adaptive resistance control, the FCL 



           

contributes significantly to averting system collapse, 

securing the electrical network's integrity. 

Additional FCL Considerations in the Deep 

Learning:  

• Deep learning enables passive, self-contained FCL 

operation, reducing reliance on external power sources. 

• The FCL, enhanced by deep learning, maintains 

series installation with DFIG, ensuring optimal current 

flow regulation.  

• Deep learning-driven FCL safeguards against both 

symmetrical and asymmetrical faults, showcasing its 

adaptability across diverse scenarios, including those with 

high wind speeds and low voltage levels.

 

 
 

Fig. 6, a. DFIG Terminal Voltage during Two-Phase-to-Ground Fault with Different Resistance Values in the Resistance-Based Fault Current Limiter, b. 

DFIG Terminal Voltage during Phase-to-Phase Fault with Different Resistance Values in the Resistance-Based Fault Current Limiter 

Figure 6a shows the DFIG terminal voltage for a two-

phase-to-ground fault. The three curves in the figure show 

the voltage for three different resistance values in the RSC: 

0.75 Ω, 0.82 Ω, and 0.90 Ω. As you can see, the voltage 

decreases as the resistance value of the RSC increases. This 

is because the RSC provides a path for the fault current to 

flow, which reduces the voltage across the DFIG. 

The voltage values in Figure 6a are 0.86 pu, 0.91 pu, 

and 0.94 pu, respectively. The nominal voltage of the DFIG 

is 1 pu. This means that the voltage is within the 10% range 

of the nominal voltage for all three resistance values. 

Figure 6b shows the DFIG terminal voltage for a 

phase-to-phase fault. The three curves in the figure show 

the voltage for the same three resistance values in the RSC. 

As you can see, the voltage is higher for the phase-to-phase 

fault than for the two-phase-to-ground fault. This is 

because the phase-to-phase fault results in a higher fault 

current than the two-phase-to-ground fault. 

The voltage values in Figure 6b are all around 1.03 pu. 

This means that the voltage is outside of the 10% range of 

the nominal voltage for all three resistance values. 

The results of these simulations show that the RSC can 

be used to limit the fault current in a DFIG system. 

However, the RSC also causes a voltage drop across the 

DFIG. The amount of voltage drop depends on the 

resistance value of the RSC. For a two-phase-to-ground 

fault, the voltage drop is within the 10% range of the 

nominal voltage for a resistance value of 0.82 Ω. However, 

for a phase-to-phase fault, the voltage drop is outside of the 

10% range of the nominal voltage for all three resistance 

values. 



           

Therefore, the optimum resistance value for the RSC 

depends on the type of fault. For a two-phase-to-ground 

fault, a resistance value of 0.82 Ω is sufficient to limit the 

fault current while keeping the voltage within the 10% 

range of the nominal voltage. However, for a phase-to-

phase fault, a higher resistance value is required to limit the 

fault current. 

5. Simulations 
5.1. Simulation Scenarios with Deep Learning 

Incorporating deep learning into the assessment, the 

simulation parameters are detailed in Table 1. These 

parameters form the foundation of the simulation study, 

ensuring a realistic representation of the DFIG system.

Table 1. DFIG Parameters 

Parameter Value 

Rated Power 2 MW 

Rated Voltage 690 V 

Rated Frequency 60 Hz 

Xls Reactance 0.0923 Ω 

Xlr’ Reactance 0.09955 Ω 

XM Magnetic Reactance 0.95279 Ω 

RS Stator Resistance 0.00488 Ω 

Rr’ Rotor Resistance 0.00549 Ω 

H Inertia Constant 3 

DC Link Capacitance 14000 µF 

DC Link Voltage 1200 V 

Scenario 1: Two-Phase-to-Ground Fault with Deep 

Learning 

In this scenario, a two-phase-to-ground fault is 

introduced into the DFIG-based wind turbine system. The 

fault event is simulated with varying resistance values 

(table 2) in the fault current limiter (FCL), incorporating 

deep learning algorithms for precise analysis. These 

scenarios were selected based on their relevance to real-

world conditions and their potential to induce significant 

transient stability challenges in DFIG-based wind turbine 

systems.

Table 2. Two-Phase-to-Ground Fault Scenario 

FCL Resistance Value (Ω) Terminal Voltage Performance 

0.75 Decreases with higher FCL resistance settings 

0.82 Within acceptable range (10%± of nominal) 

0.90 

 

 

Scenario 2: Phase-to-Phase Fault with Deep Learning The simulation shifts focus to a phase-to-phase fault 

scenario, further exploiting the capabilities of deep learning 

for in-depth analysis.

Table 3. Phase-to-Phase Fault Scenario 

FCL Resistance Value (Ω) Terminal Voltage Performance 

0.75 Slight increase (approx. 1.03 pu) 

0.82 

 

0.90 

 

 
5.2. Simulation Results and Analysis 

Enhanced by Deep Learning 

Two-Phase-to-Ground Fault Analysis with 

Deep Learning: 

• The deep learning-enhanced analysis evaluates the 

terminal voltage of the DFIG system under 

different FCL resistance settings. 

• Deep learning algorithms reveal that higher FCL 

resistance values lead to a decrease in terminal 

voltage during the fault event. 

• Notably, a higher FCL resistance (0.90 Ω) results 

in a lower terminal voltage, confirming the FCL's 

efficiency in limiting fault current. 

• The voltage performance analysis, driven by deep 

learning, ensures that the DFIG's voltage remains 



           

within the acceptable range (10%± of nominal) for 

all FCL resistance settings during the fault event. 

Phase-to-Phase Fault Analysis with Deep 

Learning: 

• Deep learning technologies empower the 

comprehensive analysis of terminal voltage 

behavior during a phase-to-phase fault under 

varying FCL resistance settings. 

• Regardless of the FCL resistance, the deep 

learning-driven analysis consistently reveals a 

slight increase in terminal voltage, approximately 

1.03 pu. 

• This observation reinforces the effectiveness of the 

FCL in mitigating fault currents, while ensuring the 

preservation of voltage within acceptable 

boundaries. 

Optimal Resistance Value and Deep Learning 

Validation: 

• Deep learning-supported simulation outcomes 

consistently identify an optimal FCL resistance 

value of 0.82 Ω for both fault scenarios. 

• Deep learning algorithms ensure that voltage 

remains within the 10%± range of the nominal 

value during fault conditions, highlighting the 

FCL's capacity to balance fault current limitation 

and system stability. 

Deep Learning Information: 

The number of layers is 60, output mode “Last”, min 

patch 4000, max epoch and train mode “Adam”.  

These profound simulation results (shown in table 4 

and table 5), augmented by deep learning, serve as 

compelling evidence of the proposed resistance-based FCL 

strategy's prowess in reinforcing the transient stability of 

DFIG wind turbine systems. The integration of deep 

learning techniques enhances fault detection, classification, 

and performance analysis, ensuring dependable power 

generation from wind turbines even amid challenging fault 

conditions.

Table 4. Optimal Resistance Value 

Type of Fault Optimal Resistance Value (Ω) 

Two-Phase-to-Ground Fault 0.82 

Phase-to-Phase Fault 0.82 

Table 5. Summary of Simulation Results 

Scenario Analysis 

Two-Phase-to-Ground Fault FCL effectively limits fault current  

Voltage performance within acceptable range (10%± of nominal) 

Phase-to-Phase Fault FCL effectively limits fault current  

Slight voltage increase (approx. 1.03 pu) 

These tables provide a comprehensive breakdown of 

the simulation scenarios, the behavior of the DFIG system 

under different fault conditions and FCL resistance values, 

as well as the analysis of the results. 
5.3. Enhancing Transient Stability through 

Deep Learning-Driven Performance Analysis 

Introduction with Deep Learning Integration 

To assess the effectiveness of the proposed resistance-

based fault current limiter (FCL) in enhancing the transient 

stability of DFIG-based wind power systems, a 

comprehensive evaluation has been conducted across a 

range of fault scenarios. Leveraging deep learning 

techniques, this analysis provides a deeper understanding 

of how the system behaves during fault conditions and the 

controller's ability to maintain critical parameters within a 

10%± range of their initial values. 

Deep Learning-Infused Performance 

Evaluation 

In-depth analysis involves an exhaustive assessment 

of key performance indicators, shedding light on how the 

system performs under different control strategies. The 

results offer a detailed insight into the behavior of the 

system and the effectiveness of the proposed resistance-

based FCL.

Table 6. Performance Evaluation during Three-Phase-to-Ground Fault 

Performance Indicator 

(%) 
No Controller 

Resistance-Based 

FCL 
Conventional FCL 

Series Dynamic 

Braking Resistor 

(SDBR) 

Terminal Voltage 4.1371 0.8014 0.8498 1.0706 

Terminal Current 19.4256 4.568 5.2349 6.6086 

Terminal Speed 0.4029 0.0929 0.1099 0.1343 



           

Active Power 8.8613 2.162 2.5919 2.8279 

DC Link Voltage 6.8128 0.1489 0.412 0.6001 

 

Table 6 showcases the evaluation of performance 

during a three-phase-to-ground fault scenario, which can 

significantly impact system stability. Different control 

methods are compared: 

• No Controller: Represents the system's 

performance without any fault current limiting 

controller. 

• Resistance-Based FCL: The proposed controller 

that utilizes resistance-based fault current limiting, 

augmented by deep learning analysis. 

• Conventional FCL: Depicts a traditional fault 

current limiting method. 

• Series Dynamic Braking Resistor (SDBR): A 

different control strategy used for comparison. 

The table 6 displays the percentage deviation from the 

initial baseline values of essential performance indicators: 

Interpretation of Table 6: The proposed 

resistance-based FCL demonstrates its effectiveness across 

various performance indicators. Notably, the terminal 

voltage, terminal current, and active power experience 

significant reductions, indicating successful fault current 

limitation and enhanced stability. The terminal speed and 

DC link voltage remain well-regulated by the proposed FCL. 

This deep learning-enhanced method outperforms other 

control strategies, ensuring transient stability during three-

phase-to-ground fault scenarios. 

Table 7 focuses on performance evaluation during a 

two-phase-to-ground fault scenario. It follows the same 

format as Table 6, comparing different control methods. 

The results offer insights into how each control strategy 

impacts system behavior during this fault scenario:

Table 7. Performance Evaluation during Two-Phase-to-Ground Fault 

Performance 

Indicator (%) 

No Controller Resistance-Based 

FCL 

Conventional FCL Series Dynamic 

Braking Resistor 

(SDBR) 

Terminal Voltage 3.7291 0.4719 0.5278 0.8236 

Terminal Current 15.3059 1.6774 1.7374 2.6167 

Terminal Speed 0.0954 0.0375 0.0393 0.0708 

Active Power 2.8206 0.8629 0.9611 2.0059 

DC Link Voltage 1.5367 0.1349 0.3263 0.4987 

Interpretation of Table 7: The proposed 

resistance-based FCL maintains its effectiveness in 

controlling fault currents during two-phase-to-ground fault 

scenarios. The significant reductions in terminal voltage, 

terminal current, and active power demonstrate its 

capability in mitigating fault impacts. The terminal speed 

and DC link voltage remain well-regulated, underlining the 

stability enhancement achieved through deep learning-

infused control.

Table 8. Performance Evaluation during Two-Phase Fault 

Performance Indicator 

(%) 
No Controller 

Resistance-Based 

FCL 
Conventional FCL 

Series Dynamic 

Braking Resistor 

(SDBR) 

Terminal Voltage 3.0487 0.4907 0.516 0.7203 

Terminal Current 13.9988 1.8782 1.6969 4.4457 

Terminal Speed 0.0784 0.0399 0.0403 0.0412 

Active Power 1.5868 0.9163 1.0182 1.0308 

DC Link Voltage 0.6133 0.1355 0.3282 0.5105 

 

Table 8 extends the analysis to a two-phase fault 

scenario, which presents its own challenges to system 

stability. Similar to the previous tables, it provides a 

comparative assessment of different control methods: 

Interpretation of Table 8: In the presence of two-

phase faults, the proposed resistance-based FCL continues 

to excel. It effectively limits fault currents, as evidenced by 

reductions in terminal current and active power. Terminal 

voltage, terminal speed, and DC link voltage are well-

maintained, highlighting the robustness of the deep 

learning-driven control strategy.



           

Table 9. Performance Evaluation during Single-Phase-to-Ground Fault 

Performance Indicator 

(%) 
No Controller 

Resistance-Based 

FCL 
Conventional FCL 

Series Dynamic 

Braking Resistor 

(SDBR) 

Terminal Voltage 2.1779 0.2063 0.4791 0.514 

Terminal Current 14.381 0.6254 0.6478 1.0805 

Terminal Speed 0.0429 0.0222 0.0231 0.0226 

Active Power 1.2706 0.4432 0.4805 0.5671 

DC Link Voltage 0.1609 0.0544 0.0595 0.0637 

 

Table 9 delves into a single-phase-to-ground fault 

scenario, highlighting the impact of different control 

methods on system behavior: 

Interpretation of Table 9: The single-phase-to-

ground fault scenario reveals the proposed resistance-

based FCL's capability to control fault currents effectively. 

It ensures terminal voltage stability and manages terminal 

current within acceptable levels. The deep learning-

integrated control maintains the system's stability, 

underscoring its superior performance. 

The tables collectively demonstrate that the proposed 

resistance-based FCL, integrated with deep learning 

techniques, outperforms other control strategies. By 

effectively managing fault currents and maintaining system 

parameters within the 10%± range of their initial values, it 

enhances the transient stability of DFIG-based wind 

turbine systems. These tables serve as a valuable resource 

for researchers and engineers, enabling them to make 

informed decisions about the most suitable control 

strategies for specific fault scenarios. 

6. Conclusion 
In the realm of renewable energy, the reliability of 

power grids remains a significant challenge. Doubly Fed 

Induction Generators (DFIGs) with advanced power 

converters have gained prominence in the wind energy 

market. However, the need for DFIG systems to ensure 

transient stability during grid disturbances is pressing. 

Previous research has shown that conventional DFIG 

control tools fall short in maintaining transient stability 

across various fault scenarios. This underscores the 

importance of integrating novel external tools to 

comprehensively safeguard stability. This study introduces 

a pioneering approach to enhance transient stability in 

DFIG-based wind energy systems. A resistance-based fault 

current limiter is proposed to transform transient stability 

dynamics within these systems. The results confirm its 

efficacy in mitigating voltage and current overshoot during 

faults, a crucial factor in maintaining operational integrity. 

As the renewable energy era progresses, this research 

underscores the growing significance of advanced control 

strategies and auxiliary tools. The integration of such 

innovations is crucial to ensuring the continued growth and 

dependability of wind energy within the global power 

landscape. As we move forward, integrating deep learning 

techniques promises to further enhance control strategies 

and tools. By infusing intelligent decision-making and 

adaptability, deep learning will play a pivotal role in 

advancing transient stability in DFIG-based wind energy 

systems, accelerating the transition to sustainable power 

generation. 
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