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Highlights 

➢ Introduction of an innovative methodology using the Naive Bayes algorithm for precise prediction of Ultimate Bearing Capacity 
(Q_u) in rock-socketed piles. 

➢ Integration of state-of-the-art meta-heuristic algorithms (Artificial Hummingbird Algorithm and Improved Grey Wolf 
Optimizer) to enhance model precision. 

➢ Development of three distinct models (NBAH, NBIG, and NB hybrid models) for predicting Q_u in rock-socketed piles. 
➢ Assessment of model performance using various evaluators, including R2, RMSE, RSR, MAE, WAPE, and SI. 
➢ Highlighting the standout performance of the NBIG model with a remarkable R2 value of 0.993 and an ideal RMSE of 1381.3 

during the training phase, emphasizing its accuracy in predicting Q_u. 
 

 

Article Info   Abstract 

Rock-socketed piles, frequently employed in soft ground foundations, represent a matter of 
paramount issue in research, design, and construction, primarily because of their bearing capacity. 
The precise estimation of the Ultimate Bearing Capacity (𝑄𝑢) of these rock-socketed piles proves to 
be a formidable challenge, primarily due to the inherent uncertainties associated with the myriad 
factors influencing this capacity. This article introduces an innovative methodology for the precise 
prediction of 𝑄𝑢. This approach leverages the Naive Bayes (𝑁𝐵) algorithm to construct exact and 
comprehensive predictive models. To enhance the model's precision, the study incorporates two 
state-of-the-art meta-heuristic algorithms, the Artificial Hummingbird Algorithm (𝐴𝐻𝐴) and the 
Improved Grey Wolf Optimizer (𝐼𝐺𝑊𝑂), into the analysis. This amalgamation gives rise to three 
distinct models: 𝑁𝐵𝐴𝐻, 𝑁𝐵𝐼𝐺, and the 𝑁𝐵 hybrid models. Moreover, the implemented method is 
assessed against the results obtained from experiments by some evaluators including R2, RMSE, 
RSR, MAE, WAPE, and SI. Of these models, the 𝑁𝐵𝐼𝐺 model emerges as a standout performer, 
boasting remarkable R2 value of 0.993 (lower than 1% enhanced performance compared to NBAH) 
and an ideal 𝑅𝑀𝑆𝐸 of 1381.3 (about 16% lower than that of NBAH) during the training phase. These 
impressive metrics underscore the model's exceptional accuracy and unwavering dependability in 
predicting the 𝑄𝑢 of rock-socketed piles. 
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Indices RMSE Root Mean Square Error 
𝑄𝑢 Ultimate Bearing Capacity MAE Mean Absolute Error 
NB Naive Bayes RSR Ratio of RMSE 
AI Artificial intelligence 𝑊𝐴𝑃𝐸 Weight Absolute Percentage Error 
AHA Artificial Hummingbird Algorithm SI Scatter Index 
IGWO Improved Grey Wolf Optimizer 𝑷𝒂𝒓𝒂𝒎𝒆𝒕𝒆𝒓𝒔 
ML Machine Learning R2 coefficient of determination 
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Pile foundations are the unsung heroes of 

construction, silently bearing the weight and loads of 

structures deep within the earth. Ensuring the stability and 

safety of these structures heavily relies on accurately 

estimating the ultimate bearing capacity (𝑄𝑢) of these piles. 

Over the years, a plethora of experimental and theoretical 

methods have been developed to predict this vital 

parameter [1]– [5]. However, the intricate nature of piles, 

coupled with the limitations of existing models, often leaves 

engineers seeking more precise solutions. Moreover, many 

existing methods are tailored to specific construction sites, 

rendering them less versatile. Among the available 

techniques, the Static Load Test (𝑆𝐿𝑇) stands out as the 

gold standard for determining 𝑄𝑢[6]– [8]. While it offers 

reliable results, the SLT is labor-intensive, expensive, and 

time-consuming. In recent years, High Strain Dynamic 

Testing (𝐻𝑆𝐷𝑇) has emerged as a cutting-edge alternative 

for predicting 𝑄𝑢. This innovative method leverages wave 

propagation theory and utilizes a pile-driving analyzer 

(𝑃𝐷𝐴) to assess a pile's capacity. Previous research has 

demonstrated a strong correlation between the bearing 

capacity estimates obtained through 𝑃𝐷𝐴 and those derived 

from 𝑆𝐿𝑇, suggesting the method's reliability[9]–[11]. One 

of the significant advantages of 𝐻𝑆𝐷𝑇 is its efficiency and 

cost-effectiveness compared to the traditional 𝑆𝐿𝑇. 

Additionally, it provides real-time insights into pile 

behavior during installation, making it an attractive option 

for engineers[12]. However, a challenge remains: 𝐻𝑆𝐷𝑇 

often requires multiple tests per project, which can increase 

costs and project duration. Recognizing this limitation, 

engineers and researchers are turning to Artificial 

Intelligence (𝐴𝐼) as a potential solution. 𝐴𝐼 technologies 

promise more accurate and efficient predictions by 

analyzing vast datasets and expediting complex 

engineering tasks. By combining the efficiency of 

𝐻𝑆𝐷𝑇 with the precision and speed of 𝐴𝐼, engineers hope to 

optimize construction projects by reducing the number of 

tests required and streamlining engineering processes[13]– 

[16]. 

Machine learning (𝑀𝐿) models, a subset of 𝐴𝐼, have 

gained prominence in geotechnical engineering for their 

ability to handle large datasets and uncover intricate 

patterns[17]– [19]. Predicting the 𝑄𝑢 of piles with 𝑀𝐿 

involves the following key steps: 

➢ Data Collection: Gather comprehensive data 

related to piles, including information on soil 

properties, pile geometry, load test results, and any 

other relevant variables. This dataset is the 

foundation for training and validating the 𝑀𝐿 

model[20]. 

➢ Feature Engineering: Carefully select and 

preprocess the features (input variables) most 

likely to influence pile capacity. This step may 

involve data cleaning, normalization, and feature 

selection techniques to improve the model's 

performance. 

➢ Model Selection: Choose an appropriate 𝑀𝐿 

algorithm or combination of algorithms for the 

estimation task. Frequently selected alternatives 

encompass regression models, Naive Bayes (𝑁𝐵), 

support vector machines, and neural networks. 

➢ Training and Validation: Split the dataset into 

training and validation sets to train the model and 

assess its performance. Iteratively fine-tune the 

model's hyperparameters to optimize its predictive 

accuracy. 

➢ Testing: Upon successful training and validation of 

the model, it can be tested on new, unseen data to 

evaluate its predictive capabilities. This step helps 

ensure the model's generalizability to different 

construction scenarios. 

➢ Deployment: Implement the trained 𝑀𝐿 model into 

practical engineering workflows. Engineers can use 

it to make predictions about 𝑄𝑢  quickly and 

accurately, reducing the reliance on costly and 

time-consuming physical tests[21]. 

By integrating 𝑀𝐿 into the prediction of 𝑄𝑢, engineers 

can harness the power of data-driven insights to make more 

informed decisions in pile foundation design[22]–[25]. For 

instance, researchers used NB machine learning method in 

the case of underground soil-structure interaction [26] and 

mechanical properties of steel strand.[27] This approach 

reduces costs and project timelines and enhances 

construction projects' overall safety and efficiency. As 

𝐴𝐼 technologies continue to advance, they are poised to 

revolutionize the field of geotechnical engineering, 

providing engineers with valuable tools for the complex 

challenges they face in the world of construction[28]. 

In pursuit of accurate and highly reliable predictive 

outcomes, this study introduces a groundbreaking 

approach that converges the realms of 𝑀𝐿 and 𝐴𝐼. The 

unique hybridization technique employed in this study has 

been meticulously crafted to enhance the efficacy of 𝑁𝐵  

models, ensuring the generation of results that can be 

unequivocally trusted. These pioneering hybrid models 

have eclipsed conventional methodologies by 

amalgamating two state-of-the-art and potent optimization 

techniques, signifying a substantial leap forward in this 

domain. The models underwent a comprehensive 

comparative analysis, evaluating their performance in 

isolation and hybrid configurations. Furthermore, the 
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deliberate decision to integrate two distinct optimizers, 

namely the Artificial Hummingbird Algorithm (𝐴𝐻𝐴) and 

the Improved Grey Wolf Optimizer (𝐼𝐺𝑊𝑂), into the 

development of these hybrid models was undertaken to 

harness the unique strengths of each optimizer. This 

strategic amalgamation culminated in a level of 

performance that far surpassed expectations, underlining 

the superiority of this hybrid approach. Moving beyond the 

technical aspects, this study also contemplated the 

pragmatic implications of these findings within real-world 

applications. The heightened precision attained through 

these hybrid models can significantly enhance the decision-

making processes in geotechnical engineering projects. 

This serves to mitigate the risks associated with inaccurate 

estimations of 𝑄𝑢, offering a tangible benefit to the field of 

geotechnical engineering. NB is chosen in order to 

capitalize on its simplicity, speed, and efficiency, 

particularly when faced with limited data. Its ease of 

implementation and computational efficiency make it ideal 

for quick predictions, while its probabilistic nature 

accommodates uncertainty in classification tasks, provided 

the assumption of feature independence holds. 

 

2. Materials and Methodology 
2.1. Data gathering 

The ongoing research is centered around establishing 

a comprehensive database to facilitate the development of 

predictive models for the Ultimate Bearing Capacity (𝑄𝑢) of 

rock-socketed piles. This endeavor involves the execution 

of Standard Penetration Test (SPT) assessments on these 

piles. To enhance the efficiency of this analysis, the study 

thoughtfully divides the dataset into three distinct subsets: 

training (70%), validation (15%), and testing (15%). This 

research builds upon a dataset comprising 172 

experimental samples from prior studies. This dataset 

validates the empirical distribution method and fortifies 

the predictive models being utilized. By employing the 

Naive Bayes (𝑁𝐵) model, this study investigates the 

behavior of 𝑄𝑢 by harnessing the inherent predictive 

capabilities of the variables outlined in Table 1. The 

meticulous selection of input parameters, which are 

predictor variables, is paramount. Previous research has 

highlighted that the most influential factor affecting 𝑄𝑢 is 

the geometric attributes of the piles, particularly their 

length and diameter. To account for the interaction 

between soil and rock layers, two specific geometric ratios 

were chosen: the ratio of length in the soil layer (𝐿𝑠) to 
socket length (𝐿𝑟), and the ratio of the total length (𝐿𝑝) to 

diameter (𝐷) and reference depth in rock layers (𝐻𝑟), a 

reference point for various geotechnical calculations[29]. 

Apart from the pile's physical dimensions, previous studies 

have identified other parameters that significantly impact 

predictive models for pile-bearing capacity, such as rock 

strength (𝑈𝐶𝑆) and the Standard Penetration Test N-value 

(𝑆𝑃𝑇 N-value). In this study, the 𝑆𝑃𝑇 N-value was 

meticulously selected as an input parameter to account for 

the influence of the soil layer on 𝑄𝑢. To summarize, the 

model inputs used for predicting 𝑄𝑢 in rock-socketed piles 
consist of 𝐿𝑠/𝐿𝑟, 𝐿𝑝/𝐷, 𝑈𝐶𝑆, and 𝑁 − 𝑆𝑃𝑇. As depicted in 

Fig. 1, the histogram plot effectively visualizes the 

relationships between input and output parameters. Lower 
values of 𝐻𝑟, 𝑁 − 𝑆𝑃𝑇, and 𝐿𝑝/𝐷 are correlated with higher 

𝑄𝑢 values, while higher 𝑈𝐶𝑆 and 𝐿𝑠/𝐿𝑟  values tend to 

increase 𝑄𝑢. In essence, all input parameters exert an 

influence on 𝑄𝑢 values  [30], [31]. 

Table 1. The statistical properties of the input variable of Q_u.

Variables 
 Indicators 

Category Min Max Avg St. Dev. 

Lp/D Input 4.331 0.286 0 0 

Ls/Lr Input 96.3 31.7 166.4 68.5 

N_SPT Input 31.34 4.9 44.7 24.2 

UCS Input 22.44 5.7 59.6 23.5 

Hr Input 4.331 0.286 0 0 

Qu  Output 96.3 31.7 166.4 68.5 
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Fig. 1. The histogram plot between input and output 

 

 
2.2. Naive Bayes (NB) 

The Naive Bayes (𝑁𝐵) classifier, a probabilistic type, 

employs Bayes' theorem and assumes robust feature 

independence[32]. Its key strength lies in its 

straightforward design, obviating the need for intricate 

iterative parameter estimation techniques. Additionally, it 

is noted by Das et al. that the 𝑁𝐵 classifier is resilient to 

noise and irrelevant attributes[33]. The 𝑁𝐵 classifier is 

based on the following equation: 

𝑦 = arg max
𝑦𝑖={𝑙𝑎𝑛𝑑𝑠𝑙𝑖𝑑𝑒,𝑛𝑜𝑛−𝑙𝑎𝑛𝑑𝑠𝑙𝑖𝑑𝑒}

𝑃(𝑦𝑖)∐𝑃(
𝑥𝑖
𝑦𝑖
)

14

𝑖=1

 (1) 

where 𝑃(𝑦𝑖)is the prior probability of 𝑦𝑖, 𝑃(
𝑥𝑖

𝑦𝑖
)is the 

posterior probability, and it can be calculated by: 

𝑃 (
𝑥𝑖
𝑦𝑖
) =

1

√2𝜋𝜎
𝑒
−(𝑥𝑖−𝜇)

2

2𝜎2  (2) 

Where 𝜇 is the mean and 𝜎 is the standard deviation of 𝑥𝑖. 

 
2.3. Artificial Hummingbird Algorithm (AHA) 
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The Artificial Hummingbird Optimization Approach 

(AHA) draws inspiration from hummingbirds' flight and 

foraging behaviors to optimize complex functions 

efficiently. AHA details. Hummingbirds employ three flight 

skills (axial, diagonal, omnidirectional) and various 

foraging strategies (guided, territorial, migratory) for 

efficient navigation. A visitation table in AHA mimics their 

memory to prevent revisiting locations, focusing on 

unexplored areas. 

A computational method called the 𝐴𝐻𝐴 is inspired by 

the foraging and flight patterns of hummingbirds. Three 

main models of this algorithm are presented in this study  

[34], [35]. 

 

2.3.1. Guided foraging  

The current foraging model has used three different 

flight behaviors: axial, diagonal, and omnidirectional 

flight[36], [37]. The following method can derive a 

mathematical expression representing guided foraging and 

a potential food source. 

𝑣𝑖(𝑡 + 1) = 𝑥𝑖,𝑡𝑎(𝑡) + ℎ. 𝑏. (𝑥𝑖(𝑡) −

𝑥𝑖,𝑡𝑎(𝑡)) ℎ~𝑁(0,1)  
(3) 

The Eq. (3) defines 𝑥𝑖,𝑡𝑎(𝑡) as the spatial coordinates of the 

desired food source, with ℎ signifying the guiding 

parameter[38]. Additionally, 𝑥𝑖(𝑡) represents the location 

of the 𝑖𝑡ℎ food source in the temporal domain, which is 

illustrated in Eq. (4). 

𝑥𝐴𝑖(𝑡) = {
𝑥𝑖(𝑡)          𝑓(𝑥𝑖(𝑡)) ≤ 𝑓(𝑣𝑖(𝑡 + 1))

𝑣𝑖(𝑡 + 1)   𝑓(𝑥𝑖(𝑡)) > 𝑓(𝑣𝑖(𝑡 + 1))
 (4) 

 

2.3.2. Territorial foraging 

Studies show that hummingbirds prefer finding new 

food sources instead of switching between available ones 

once their current source is depleted. This behaviour is 

emulated in the guided foraging aspect of the AHA 

algorithm. Furthermore, hummingbirds display territorial 

foraging behaviour by exploring nearby areas within their 

territory to discover potentially improved solutions. This 

behaviour is integrated into the guided foraging module of 

the AHA algorithm, as defined in Eq. (5): 

𝑣𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑔. 𝑏. (𝑥𝑖(𝑡))𝑔 ~ 𝑁(0,1) (5) 

 

2.3.3. Migration foraging 

Eq. (6) is where the idea of migration foraging was 

developed. 

𝑥𝑤𝑎𝑟(𝑡 + 1) = 𝑙𝑏 + 𝑟. (𝑢𝑏 − 𝑙𝑏) (6) 

The variable 𝑥𝑤𝑎𝑟  is used to denote the source of sustenance 

possessing the poorest population rate of nectar refilling. 

Meanwhile, 𝑙𝑜𝑤𝑒𝑟 limit 𝑙𝑏 and 𝑢𝑝𝑝𝑒𝑟 limit 𝑢𝑏 ranges are 

established, assuming that a factor denoted by the letter 𝑟 

is random[39]. 

 

2.4. Improved Grey Wolf Optimizer (IGWO) 

IGWO, a novel population-based synthetic 

optimization algorithm, leverages the hunting strategies of 

a wolf pack to pursue and explore optimization objectives. 

It is crucial to note that there exists a rigid social structure 

among wolves, where pack members are categorized into 

four distinct groups based on their social status, namely 

Alpha (𝛼), beta (𝛽), delta (𝛿), and omega (𝜔). As depicted 

in Figure 2, the Alpha assumes the role of the leader and 

supreme authority within the pack, responsible for 

determining hunting and resting times and locations. The 

Beta occupies the second tier of the hierarchy, assisting the 

Alpha in decision-making and managing the pack's 

behavior. The Delta initially shoulders responsibilities 

related to security, upkeep, and marking[40]. Within this 

hierarchy, the Delta follows the directives of the Alpha and 

Beta. Finally, at the lowest rank of the hierarchy, the Omega 

represents wolves that do not fall into the aforementioned 

three classes. This hierarchical structure within the wolf 

pack significantly influences the hunting process, with the 

Delta and Beta collaborating in hunting and prey 

encirclement under the Alpha's guidance. 
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Fig. 2. Hierarchy of the IGWO algorithms 

 

An individual's coolness is eventually replaced by a pack of 

wolves changing their movements to catch prey as it flees. 

During the hunting process, gray wolves employ a strategy 

where they encircle their prey in the following manner: 

𝐶 = |�⃗⃗� × �⃗⃗�𝑝𝑟𝑒𝑦(𝑟) − �⃗⃗�𝑤𝑜𝑙𝑓(𝑟)| (7) 

Here, 𝑟 is the current's repetition, �⃗⃗�𝑝𝑟𝑒𝑦 , �⃗⃗�𝑤𝑜𝑙𝑓  identify the 

position of prey, 𝑂 represents the factor responsible for 

oscillations and its formula for computation are described 

as follows: 

�⃗⃗� = 2𝑡1 (8) 

Updating the formula for the gray wolf's position would 

look like this: 

�⃗⃗�𝑤𝑜𝑙𝑓(𝑟 + 1) = �⃗⃗�𝑝𝑟𝑒𝑦(𝑟) − 𝐼 × �⃗⃗⃗�  (9) 

Where, 𝐼 shows the isotropic coefficient specified based on 

Eq. (10): 

𝐼 = 2𝑎 × 𝑡2 − 𝑎  (10) 

𝑡1 and 𝑡2 are random vectors in the range of [0,1], 𝑎 

decreases linearly from 2 to 0 with increasing iteration 

time[41]. 

 

 
Fig. 3. Vectors' possible next position and their position 
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Grey wolves engage in hunting and update their positions 

using the provided formula. However, adjustments in 

values 𝐸 and 𝐹 enable wolves to adopt more optimal 

individual positions. As depicted in Figure 3, wolves initiate 

approaches and attacks on prey when the value of 𝐼 is less 

than 1. When necessary, a wolf may be compelled to 

abandon its current prey and search for an alternative. It's 

worth noting that the precise location of prey within the 

analyzed space remains unknown, making alpha, beta, and 

delta the optimal solutions, as exemplified in Figure 4. 

Additionally, other gray wolves should adjust their 

positions according to the following formula: 

{

�⃗⃗�𝐴𝑙𝑝ℎ𝑎 = |�⃗⃗�1 × �⃗⃗�𝐴𝑙𝑝ℎ𝑎(𝑟) − �⃗⃗�|

�⃗⃗�𝐵𝑒𝑡𝑎 = |�⃗⃗�2 × �⃗⃗�𝐵𝑒𝑡𝑎(𝑟) − �⃗⃗�|

�⃗⃗�𝐷𝑒𝑙𝑡𝑎 = |�⃗⃗�3 × �⃗⃗�𝐷𝑒𝑙𝑡𝑎(𝑟) − �⃗⃗�|

 (11) 

{

�⃗⃗�1 = �⃗⃗�𝐴𝑙𝑝ℎ𝑎 − �⃗⃗�1 × �⃗⃗⃗�𝐴𝑙𝑝ℎ𝑎

�⃗⃗�2 = �⃗⃗�𝐵𝑒𝑡𝑎 − �⃗⃗�2 × �⃗⃗⃗�𝐵𝑒𝑡𝑎

�⃗⃗�3 = �⃗⃗�𝐷𝑒𝑙𝑡𝑎 − �⃗⃗�3 × �⃗⃗⃗�𝐷𝑒𝑙𝑡𝑎

 (12) 

�⃗⃗�(𝑟 + 1) =
�⃗⃗�1 + �⃗⃗�2 + �⃗⃗�3

3
 (13) 

 
Fig. 4. Hierarchical mechanism of the IGWO 

 

 
2.5. Performance evaluation methods  

This article employs a range of metrics to assess the 

models, including Root Mean Square Error (𝑅𝑀𝑆𝐸), 

Correlation Coefficient (R2), Mean Absolute Error (𝑀𝐴𝐸), 

Weight Absolute Percentage Error (𝑊𝐴𝑃𝐸), Ratio of RMSE 

(𝑅𝑆𝑅), and scattered index (SI), as previously outlined. A 

high R2 value signifies exceptional algorithm performance 

throughout the training, validation, and testing phases. 

Conversely, lower 𝑅𝑀𝑆𝐸 and 𝑀𝐴𝐸 values are preferable, as 

they indicate decreased model errors. These metrics are 

computed using Eqs. (14) to (19). 

Correlation Coefficient 

𝑅2 =

(

 
∑ (ℎ𝑖 − ℎ̅)(𝑞𝑖 − �̅�)
𝑊
𝑖=1

√[∑ (ℎ𝑖 − ℎ)
2𝑊

𝑖=1 ][∑ (𝑞𝑖 − �̅�)
2𝑊

𝑖=1 ]
)

 

2

 (14) 

Root Mean Square Error 

𝑅𝑀𝑆𝐸 = √
1

𝑊
∑(𝑞𝑖 − ℎ𝑖)

2

𝑊

𝑖=1

 

 

(15) 

Mean Absolute Error 

𝑀𝐴𝐸 =
1

𝑊
∑|𝑞𝑖 − ℎ𝑖|

𝑊

𝑖=1

 

 

(16) 

Ratio of RMSE 

𝑅𝑆𝑅 =
𝑅𝑀𝑆𝐸

𝑆𝑡. 𝐷𝑒𝑣.
 (17) 

Weight Absolute Percentage Error  

𝑊𝐴𝑃𝐸 = max [
|𝑞𝑖 − ℎ𝑖|

𝑞𝑖
] (18) 

Scatter index 
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𝑆𝐼 =
𝑅𝑀𝑆𝐸

�̅�
 (19) 

In these equations, ℎ𝑖 and 𝑞𝑖 refer to the predicted and 

experimental values, respectively. The mean values of the 

experimental samples and predicted are represented by ℎ̅ 

and �̅�. Alternatively, 𝑊 denotes the number of samples 

being considered. 

 

3. Results and discussion 
In this study, three models (𝑁𝐵, 𝑁𝐵𝐼𝐺, and 𝑁𝐵𝐴𝐻) 

were employed to forecast 𝑄𝑢. The performance evaluation 

was carried out across four distinct phases: training (70%), 

validation (15%), testing (15%), and All (100%). This 

careful distribution of data was employed to ensure a fair 

evaluation of the models, ultimately resulting in more 

accurate and reliable 𝑄𝑢 estimates for improved soil 

analysis and decision-making in engineering and 

construction projects. Table 2 shows statistical metrics for 

evaluation: 𝑊𝐴𝑃𝐸,𝑀𝐴𝐸, R2, 𝑅𝑀𝑆𝐸, and 𝑅𝑆𝑅. 

➢ R2: R2 values indicate the degree to which the 

independent variable accounts for the variance in 

the dependent variable. During the training phase, 

the 𝑁𝐵𝐼𝐺 model exhibited exceptional predictive 

accuracy with an outstanding R2 value of 0.993, 

surpassing its counterparts. In contrast, the 𝑁𝐵 

model showed slightly lower R2 values during 

training, with a measurement of 0.976. 

➢ RMSE: 𝑅𝑀𝑆𝐸 values ranged from 1381.3 to 3467.3. 

Notably, during testing, the 𝑁𝐵 model displayed 

the highest 𝑅𝑀𝑆𝐸, while the 𝑁𝐵𝐼𝐺 model 

showcased the lowest 𝑅𝑀𝑆𝐸 during training. 

➢ RSR: The 𝑅𝑆𝑅 metric indicated the highest value of 

0.341 for the 𝑁𝐵 model during the training phase, 

whereas the 𝑁𝐵𝐼𝐺 model achieved the minimum 

value of 0.137 during the training stage. 

➢ MAE: For 𝑀𝐴𝐸, the 𝑁𝐵 model exhibited the 

highest value at 2147.57, while the 𝑁𝐵𝐼𝐺 model 

emerged as the frontrunner, presenting the most 

favorable 𝑀𝐴𝐸 values of 1048.63 during the 

training phase. 

➢ WAPE: The 𝑁𝐵𝐼𝐺 model demonstrated the lowest 

and most favorable 𝑊𝐴𝑃𝐸 value of 0.061 during the 

training phase, while the 𝑁𝐵 model had the highest 

𝑊𝐴𝑃𝐸 value of 0.137 during the validation phase. 

➢ SI: The NBIG model registered the best 

applicability in predicting with possessing the 

lowest SI value of 0.798 in the training phase. On 

the other hand, The NB model identified as the 

weakest model. 

Overall, the comprehensive findings unequivocally 

establish the 𝑁𝐵𝐼𝐺 model's superiority over 𝑁𝐵 and 𝑁𝐵𝐴𝐻 

across multiple evaluation phases. This approach ensures 

robust soil analysis and contributes to more informed 

decision-making in engineering and construction projects. 

 

Table 2. The result of developed models for NB. 

Model Phase 
Index values 

RMSE R2 MAE RSR WAPE SI 

NB 

Train 3709.1 0.976 2544.25 0.367 0.147 0.2142 

Validation 3996.6 0.970 2783.32 0.402 0.137 0.1971 

Test 3467.3 0.963 2147.57 0.341 0.143 0.2302 

All 3718.9 0.973 2520.43 0.365 0.145 0.2135 

NBIG 

Train 1381.3 0.993 1048.63 0.137 0.061 0.0798 

Validation 2137.4 0.983 1743.60 0.215 0.086 0.1054 

Test 1874.1 0.991 1492.95 0.184 0.099 0.1244 

All 1597.7 0.990 1220.85 0.157 0.070 0.0917 

NBAH 

Train 1657.1 0.986 1118.26 0.164 0.065 0.095 

Validation 2286.7 0.973 1684.02 0.230 0.083 0.1128 

Test 1940.3 0.976 1363.25 0.191 0.091 0.1288 

All 1809.8 0.982 1240.81 0.177 0.071 0.1039 

Fig. 5 displays a scatter plot that provides a visual 

representation of our analysis. This plot showcases hybrid 

models assessed through the metrics of R2 and 𝑅𝑀𝑆𝐸. 

Notably, the 𝑁𝐵𝐼𝐺 model stands out for its exceptional 

accuracy, evident in the tight clustering of data points 

around the central line with minimal spread. Furthermore, 

it is worth highlighting that the 𝑅𝑀𝑆𝐸 value for the 

validation data proves to be lower than that for the testing 

data, which indicates a reduction in data dispersion and 

bolsters the model's precision. On the other hand, the 𝑁𝐵 
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model, while certainly valuable, exhibits a somewhat lower 

level of accuracy, resulting in a more scattered distribution 

of output when compared to the other models. 

 
 

 
Fig. 5. The scatter plot for developed hybrid models. 

 

In Fig. 6, the study presents a comparative visualization of 

the predicted and observed 𝑄𝑢 through a line plot. This 

graphical representation is segmented into three main 

phases: training, validation, and testing. The accuracy of 

this portrayal depends on how closely the predicted 

behavior aligns with the observed behavior. Within these 

three phases, subtle discrepancies are apparent, primarily 

stemming from the prominent positioning of predicted 

points above the measured values within the 𝑁𝐵𝐼𝐺 model. 

In contrast, the 𝑁𝐵 and 𝑁𝐵𝐴𝐻 models reveal slight 

divergences between the projected and observed points, 

although their precision falls short of the level 

demonstrated by the 𝐾𝑁𝐺𝑇 model. 
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Fig. 6. The comparison of measured and predicted values. 

 

Fig. 7 provides a visual representation of the error rate 

percentages for the hybrid models, employing a histogram 

plot. It is noteworthy that the samples tend to congregate 

within a relatively narrow error range of −10% to 10%, 

demonstrating the consistent and closely grouped 

frequencies observed in the 𝑁𝐵𝐼𝐺 model. Among the three 

models in consideration, the 𝑁𝐵 model distinguishes itself 

by displaying a broader range of error percentages from 

−30% to 30%. This broader range signifies increased 

variability and a decreased level of predictive precision 

compared to the other two models. 
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Fig. 7. The error rate percentage for the hybrid models is based on a histogram plot.

 

Moreover, in Fig. 8, a scatter plot showcases the developed 

models' error percentages. As mentioned earlier, these 

models have undergone assessment across three distinct 

phases. The visual representation unequivocally indicates 

that these models consistently exhibited commendable 

performance, maintaining error rates below ten percent. It 

is worth highlighting that the NBIG model achieved 

exceptional accuracy, demonstrating errors approaching 

zero percent. In contrast, the NB model displayed slightly 

more variability, with its highest error reaching 50%. 

 

 
Fig. 8. The scatter plot of errors among the developed models. 
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The exhibition of Taylor diagrams for the applied NB, 

NBIG, and NBAH predictive models is shown in Fig. 9. This 

diagram is a statistical summary of the observed and 

predicted 𝑄𝑢, which combines the root mean square errors 

(RMSE), correlation coefficients (CC), and the normalized 

standard deviations. From the figure demonstration, the 

NBIG model (Combination of the NB model and IGWO 

optimizer) is considered as the best predictive model, and 

its results are closest to the ideal benchmark observed 

experimental data. 

 

 
Fig. 9. The Taylor diagram for related models. 

 

 

4. Conclusion 
This study presents a groundbreaking approach for the 

precise prediction of Ultimate Bearing Capacity (𝑄𝑢) values, 

harnessing the capabilities of Machine Learning (𝑀𝐿) 

techniques, with a specific focus on Naive Bayes (𝑁𝐵) 

algorithms. This innovative methodology not only offers a 

cost-effective alternative but also significantly reduces the 

time required for 𝑄𝑢 predictions. At its core, this 𝑄𝑢 

prediction framework revolves around a novel 𝑀𝐿 model 

based on the 𝑁𝐵 algorithm, showcasing its potential to 

reshape 𝑄𝑢 prediction practices. To further enhance 

accuracy and minimize errors, two meta-heuristic 

algorithms, 𝐼𝐺𝑊𝑂 and 𝐴𝐻𝐴, were thoughtfully integrated 

into the process, leading to the creation of three distinct 

models: 𝑁𝐵𝐼𝐺,𝑁𝐵𝐴𝐻, and an individual 𝑁𝐵 model. The 

validation of these models involved using laboratory 

samples obtained from reputable sources, spanning the 

training, validation, and testing phases. A comprehensive 

set of evaluation metrics, including R2, 𝑅𝑀𝑆𝐸,𝑀𝐴𝐸, 𝑅𝑆𝑅, 

and 𝑊𝐴𝑃𝐸, was employed to assess and compare model 

performance. 

The results of this study notably indicate that the 𝑁𝐵𝐼𝐺 

models consistently achieved the highest R2 value of 0.993, 

underscoring their superior predictive capabilities. 

Conversely, the standalone 𝑁𝐵 model exhibited the lowest 

R2 value, with a marginal difference of merely 2%. 

Across all phases, 𝑁𝐵𝐼𝐺 demonstrated exceptional 

performance by consistently yielding significantly lower 

𝑅𝑀𝑆𝐸 values (minimum value of 1382.3), with an 

outstanding 92% reduction compared to 𝑁𝐵 during 𝑄𝑢 

prediction. 

In terms of 𝑀𝐴𝐸, the 𝑁𝐵𝐼𝐺 models emerged as clear 

frontrunners, delivering a remarkable 75% reduction in 

error compared to the 𝑁𝐵 model during the precise 

forecasting of 𝑄𝑢 . 

While 𝑅𝑆𝑅 and 𝑊𝐴𝑃𝐸 metrics were used to assess 

model performance comprehensively, the 𝑁𝐵𝐼𝐺 model 

consistently outperformed its counterparts during all 

phases. 

The effectiveness of 𝑀𝐿 models as a trustworthy 

substitute for conventional experimental techniques for 

predicting 𝑄𝑢, offering significant time and resource 

savings, is highlighted by this study's conclusion. Notably, 

the addition of the 𝐼𝐺𝑊𝑂 optimizer makes these models 

even more effective, creating a cooperative relationship that 

consistently produces precise 𝑄𝑢 predictions. This 

innovative approach has the potential to revolutionize 𝑄𝑢 

prediction methods in a variety of engineering and 

construction applications, ultimately enabling more 

informed resource allocation and decision-making 

procedures. 
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