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Highlights 
 

➢ Introduction of a novel Internet of Things-based system for accident detection using low-cost smartphone sensors. 
➢ Recognition of the limitations in existing hardware-based systems, highlighting the need for a more cost-effective and widely 

available solution. 
➢ Utilization of smartphone sensors for collision detection, addressing issues like sensor damage and failure detection. 
➢ Development of a smartphone application to continuously read sensor data, with cloud-based processing for accident 

identification. 
➢ Proposal of a scheme that not only identifies accidents but also alerts nearby hospitals and ambulances, contributing to 

improved emergency response systems. 
 

Article Info   Abstract 

Business organizations and the research community try to precisely detect occurrences and assist 
in the case of a disaster. Most development systems are hardware-based, making them pricey and 
unavailable in every vehicle. A vehicle's sensors can be destroyed in various ways, including through 
minor accidents or fixed interactions. In some instances, the sensors are incapable of detecting an 
accident. Intelligent phone sensors are a great alternative because of their dependability and 
availability. Smartphone sensors can detect collisions. Few methods detect failures using cell 
phones. These systems, however, have a low error rate. The study proposes an Internet of Things-
based system built on low-cost devices. The suggested system has two stages: identification and 
reporting of accidents. These systems rely on sensors to detect mobile phone failures. The suggested 
system employs a variety of smartphone sensors. The study involves creating a smartphone 
application that continually reads sensor data and sends it to the cloud for further processing. The 
crash was discovered by threshold analysis. The critical contribution of this research is creating a 
scheme that alerts nearby hospitals and ambulances when an accident occurs. The system will have 
more minor inaccuracies, precisely identify accidents, and perform better than earlier techniques 
using four sensory inputs. This paper introduces novel types of deep learning for accident detection. 
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DISCO Distribution Company c Price Factor 
GENCO Generation Company 𝑄𝐷  Demand Reactive power 
GOA Grasshopper Optimization Algorithm 𝑄𝐺  Generator Reactive Power 

LMP Local Margin Price 𝐺𝑖𝑗  Conductance of Line ij 

OPF Optimal Power Flow 𝑆𝑗𝑖
𝑚𝑎𝑥   Maximum mixed power limit 

SCL System Cost Index 𝑉𝑖
𝑚𝑎𝑥   Upper limit of voltage at bus i 

VSI Voltage stability index 𝑉𝑖
𝑚𝑖𝑛  Lower limit of voltage at bus i 

Parameters 𝜆  Energy marginal section in reference bus 
C Cost function 𝜆𝐿,𝑖  Section associated with losses 

B Benefit factor 𝜆𝐶,𝑖  Section associated with congestion 

𝑃𝐷  Demand power   
𝑃𝐷𝐺  Distributed generation power   
𝑃𝐺  Generator power   
𝜕𝑗   Angle of the voltage of ith bus   

𝑣𝑗   Voltage of ith bus   

  

1. Introduction 

Cities are becoming increasingly congested with 

tourists, residents, and cars. The increase in the proportion 

of automobiles has led to a rise in traffic. According to the 

last WHO estimate, 1.35 million people die yearly in traffic 

accidents, and 50 million are wounded [1]. Road crashes 

are now the ninth leading cause of death. However, the 

International Road Safety Association (ASIRT) predicts 

that, unless substantial improvements occur, they will soon 

increase to the fifth leading cause of death [2]. 

Furthermore, the societal costs of road accidents are 

significant. The International Road Safety Association 

expects that road accidents will consume one to two percent 

of each country's yearly budget. [2]. 

Even in sophisticated nations with road safety 

measures, the global yearly number of driving deaths has 

recently climbed [3]. However, the issue remains that low- 

and middle-income nations have the most incredible 

pressure on tolls and road injuries [4]. High fatality rates 

are particularly significant for improving road safety in 

developed and developing nations. The introduction of IoT 

promises to produce intelligent traffic control systems [5]. 

The Global Positioning System (GPS) is rapidly being 

employed in various applications, including vehicle 

positioning. Indeed, many automobiles nowadays have 

GPS systems that detect the vehicle's location and report it 

to cloud servers [6]. Other instruments for accident 

detection or smart transportation management are also 

integrated into current automobiles and continuously 

gather and store data. [7]. Because of the inclination to 

enhance the accuracy and efficacy of the algorithm, the high 

sampling rate creates major obstacles to storing and 

evaluating this data.  

The communication of numerous items using Internet 

channels is called the Internet of Things [5]. In general, the 

Internet of Things is developed and exhibited by connecting 

all items over the Internet with the goal of remote sensing 

and control. Other technologies influencing IoT include 

wireless sensor networks, machine-to-machine 

communications, robotics, wireless networks, Internet 

technologies, and smart gadgets. The Internet of Things 

(IoT) refers to items and properties that are related and 

traceable via digital networks. This network is expanding 

daily.  Businesses must alter how data is evaluated to 

gather, clean, prepare, and analyze RFID sensor data and 

tags in the least amount of time to reap the benefits of IoT. 

In today's highly competitive world, deciding on the 

correct data in the shortest time is critical to keeping a firm 

running. The basic IoT architecture in Figs. 1 and 2 depicts 

the broad IoT ecosystem, which comprises a range of daily 

products. 



           

 
Fig. 1. IoT base architecture 

 
Fig. 2. IoT general ecosystem include a series of everyday objects 



           

There are several meanings of IoT. The Institute of 

Electrical and Electronics Engineers, for example, defines 

the Internet of Things as "a network of products—each with 

embedded sensors" linked to the Internet. According to 

Internet meanings, things are a physical, cyber system that 

connects physical items to the cyber domain. IoT has a 

surprising breadth and application, including many items 

such as automobiles, buildings, mobile phones, different 

electronics and infrastructure, and even clothes. A network 

often connects devices in an IoT system. These material 

things may be RFID-enabled or contain other types of 

identification, such as barcodes, and various sensors may 

detect their existence. As input, these sensors collect 

information about the item and transfer it to the processing 

and analysis system. It should be highlighted that sensors 

have restricted computing power and storage size, which 

might pose problems, particularly regarding security and 

dependability. Some of these challenges have been 

addressed using cloud computing [8]. 

The quantity and diversity of sophisticated 

applications that use cutting-edge technology are 

increasing. Reduced storage prices, processing power, 

device availability, and affordability are critical 

considerations. Intelligent cities offer residents better, 

more innovative, responsive, and more economical 

services. Through evolving intelligent transportation 

technologies, smart cities may supply mobility solutions. 

Several nations use traffic systems to improve protection 

and minimize contamination. Recent World Bank research 

found that "welfare gains comparable to 6 to 32 percent of 

GDP can cut by 50 percent road fatalities and injuries over 

24 years [8]." The primary emphasis in intelligent 

transportation systems is on real-time information and 

decision-making. 

Reduced accident reaction time is one of the most 

effective strategies to minimize road deaths. Several 

systems, like e-Notify, can assist in identifying and 

reporting traffic accidents [8]. Each vehicle must have an 

onboard unit, or OBU, to use the e-Notify system. While 

this is a viable option, the European Commission created 

the eCall system and mandated its use in all vehicles 

manufactured. When an accident is detected, the eCall 

system calls 112 (999 in the UK and other countries) [8]. 

The main innovation of this research is the 

optimization of the approach presented in reference [8], 

which is the basic research paper of this research. In fact, 

the approach presented in [8] has created an innovative 

environment that works in the web context, but the purpose 

of this research is to provide a simulation structure for the 

IoT platform for identifying and reporting accidents in 

smart cities and evaluate it. Some challenges of IoT and also 

accident detection models were reviewed in [9]–[22]. The 

main contribution is also using deep learning in a new 

mode developed with modeling based on problem issues. 

The rest of this paper can be categorized as follows: In 

Section 2, the literature review is done. The proposed 

method is presented in Section 3. In Section 4, a discussion 

of the results is expressed, and the conclusion is also stated 

in Section 5.  

 

2. Review of Literature 

Several concepts and tactics for dealing with road 

safety, vehicle communications, and post-accident rescue 

operations may be found in the literature. This study 

concentrates on the most practical approaches and 

strategies: software and hardware-based solutions. It 

primarily focuses on accident detection technology that 

makes use of a variety of sensory inputs. The review of the 

current systems connected to traffic dangers and road 

accidents in this part reveals their strengths, shortcomings, 

and limits.  

 

Part I) Smartphone-based systems 

A substantial amount of research on this topic can be 

found to solve the challenge of low-cost, resilient solutions 

to detect and notify automobile accidents based on mobile 

technology. It debuted a crash alarm system in [23] that 

used accelerometers and GPS data from mobile devices to 

identify accidents. The system delays transmitting 

incident-related alerts. [24] proposed an accident 

identification approach that uses the vehicle's position and 

reports an accident through text message on a cell phone. 

The system only employed one sensor, the vehicle's 

location, which might lead to false accident reports. The 

authors of [25] presented a technique for detecting 

accidents that employs gravitational force, velocity, and 

noise. A web server receives an emergency notification and 

sends a message to the emergency contact number. The key 

downside of this technology is that it may report 

inaccurately in a low-speed collision where the system 

attempts to ensure the user is in the car.  

They created an Android application that 

distinguishes events using acceleration data [26]. The 

technology transmits a pre-recorded audio message to 108 

ambulances (an emergency service provided in India). The 

accelerometer is highlighted in [27] as the primary sensor 

of the smartphone for detecting an accident. The system 

continually collects data and utilizes that information to 

calculate the accident's severity. The center notifies the 

medical provider of the accident and gives the owner or 

driver information. The issue with both methods is that 



           

their dependence on a single sensor leads to mistakes in 

reporting because no other information is available to 

validate a suspected occurrence. 

In [28], an innovative phone-based system is 

presented that uses the accelerometer to identify the 

accident and locate the nearest emergency location to 

which the occurrence should be reported. Again, this 

method has a break point issue, which leads to a tendency 

for erroneous reporting.  

They created a smartphone application in [29] 

utilizing a processing unit, or OBU. This software allowed 

the driver to communicate with their automobile. The app 

notices an accident using airbag agents and alerts the 

emergency service provider through email or SMS. This 

software's flaw is that it needs a smartphone app. [30] also 

presented a smartphone-based car accident alarm system. 

The system identified the accident using a pressure sensor 

on the phone. They monitored speed using GPS and an 

angle gradient with a smartphone accelerometer. The 

system detected the mishap on a smartphone using two 

GPS sensors and an accelerometer. Event data is saved on 

the server. The system was more dependable than others, 

but if the server went down, it might cause issues. After 

detecting the incident, the system informed the nearest 

hospital and police station. [31] presented a mechanism for 

detecting accidents using smartphone sensors. 

This phone sent incident information via its 3G 

technology connection. 

In [32], a novel approach is described that uses 

accelerometers to detect collisions and warns the server of 

emergency dispatches and essential information via the 

Global Messaging System for Mobile (GSM). Again, this 

system detected an accident with only one sensor. 

[33] presented a GPS and GSM-based car accident 

detection and tracking system. The switch buttons detect 

the event and use GSM to send the location to the phone 

number provided by the user. 

Another method proposed in [34] is a GPS-based 

automated localization system. This method also provided 

communication capabilities via the use of a GSM modem. 

The technology used an accelerometer to detect the 

incident and send a notification to police headquarters and 

the rescue team. In the event of a minor collision, the driver 

has the option to disable the warning message.  

[35] presented a system that uses smartphones to 

exchange vehicle position and speed data with other cars in 

real-time. Various machine learning algorithms are 

employed to evaluate data, offer information on road 

conditions, and detect accidents. The system attempted to 

make judgments based on the information gathered. 

Unfortunately, the findings of this investigation show 

inadequate accuracy in accident detection.  

[36] presents yet another well-respected study. Using 

an integrated accelerometer and gyroscope, the writers 

developed a smartphone-based application that detects 

unintended accidents and alerts the adjacent emergency. 

The planned strategy is focused on reducing reaction time 

and does not consider vehicle accidents. 

 

Part II) Hardware-based Systems  

As mentioned, road accidents are the primary cause of 

fatalities; thus, more study is needed to discover and swiftly 

begin rescue efforts. The likelihood of fatality is lowered if 

the timeframe between the crash and dispatch of the rescue 

team is shortened, and this has inspired several researchers 

to minimize reaction time. [37] presented a study of mobile 

phone appliances and events using OnStar data. The On 

Star system has an implanted mobile card that may be 

activated manually or automatically via airbag deployment. 

The technology has a restriction in that it requires manual 

intervention or is triggered in the case of a catastrophic 

accident in which the airbag is deployed and depends on a 

sensor signaling that the airbag must be organized.  

Some systems only run in specific regions or employ 

exceptional instances. Because there are multiple 

competing movements in various directions, road junctions 

are a typical location for crashes. [38] presented a system 

for automatically detecting, recording, and reporting 

incidents at junctions. Cameras are installed at junctions to 

detect vehicles and their associated data. The system's 

choice is based on the extracted characteristics. The factors 

that contributed to the incident, as well as the 

characteristics of road crossings that impact safety. This 

technology only detects accidents at junctions and does not 

identify accidents anywhere else. The authors presented a 

crash tracking system in [39], which employs a 

microcontroller to regulate all processes. Messages are 

delivered to a determined cellphone number. The system's 

performance review revealed a bogus report of accidents. 

The current system is simply for accident detection and has 

no connection to rescue systems. 

[40] describes an intelligent system capable of 

detecting an accident and utilizing emergency service 

information. Its intensity is utilized in choosing whether or 

not to employ emergency rescue resources. Delay, 

bandwidth, and delivery assurances are the issues this 

research tackles when running the system. [41] proposes a 

crash detection and reporting system that detects accidents 

using a sensor. [42] presents a solution for identifying 

events that leverages backup vector machines and IoT. This 



           

technique is used for both accident detection and traffic 

forecasting.  

A GPS-based position tracking system was presented 

in [43]. The system uses a crash sensor to gather event data. 

The data is subsequently sent to the emergency center via 

SMS. The response team is then dispatched to the location 

by the Emergency Center. Despite its many benefits, the 

system has several disadvantages. For example, the user 

must manually start the system because it is not automated. 

The [44] IoT-based system detects shocks  with a shock 

sensor. The rescue crew received basic rescue information 

from this mechanism. This strategy aided the rescue team 

in determining the exact location of the accident. It also 

made people realize the quickest and best path, which is 

then relayed to the nearest ambulance. 

 

3. Proposed Method  

In order to address the current limitations in crash 

detection systems, this study proposes an Optimized 

Accident Detection and Reporting System, or OADRS. The 

new OADRS crash tracking and reporting system utilizes 

modern Android smart phone capabilities and thus reduces 

overall cost because no special hardware is required. All 

processing is done in the cloud. The OADRS architecture is 

the layer architecture seen in Fig. 3.

 
Fig. 3. OARDS architecture 

 

The OADRS system architecture comprises five 

diverse coatings: the application, database, cloud, network, 

and perception layer. The perception layer is responsible 

for interacting with the smartphone sensors in the 

suggested architecture, and gathering data from the 

sensors is the primary aim of the perception layer in 



           

OADRS architecture. This data related to the vehicle's 

gravitational force, speed, sound, pressure, and position 

was obtained via smartphone sensors before being sent to 

the network layer for further processing. The network layer 

serves as a link between the perceptual and cloud levels. 

First, it gets data from perception layer sensors such as 

smartphone sensors, locations, and operator information. 

The data is then sent to the cloud via the network layer 

using Wi-Fi cellular connectivity or 3G/4G/5G 

technologies. The cloud layer maintains the algorithm for 

accident identification and detects an accident based on 

threshold analysis, so the nearest hospital is contacted if an 

accident is recognized. The data processing layer 

subsequently sends information to the database. Finally, 

the database layer keeps information on accidents, 

hospitals, drivers, and vehicles. The application layer 

receives all information, including the smartphone driver 

application interface and the hospital's web-based system 

interface.  

For a better understanding of the system, Fig. 4 

displays the work of the suggested method. 

First, users download the app and install it on their 

smartphones. Then, log in to the application and provide 

the necessary information. Once registered, users can use 

the app freely. They activate the tracking process each time 

by initiating a trip. Then, the smartphone reads sensor data 

and sends it to the cloud. In the cloud, this information is 

processed to recognize any accident. A nearby hospital will 

be notified and provide details of the incident at the 

moment of the accident.

 
Fig. 4. OARDS flow diagram 

 

If each automobile is linked to a smartphone, each 

smartphone contains four sensors: pressure, sound 

(microphone), accelerometer, and a speed sensor. An 

Android phone collects raw data which is equipped with the 

above sensors to use for the experimental evaluation. The 

phone continuously sends data to the cloud. In the 

presented method, roads are equipped with roadside units, 

or RSUs. RSUs are used to store information from cars. For 

testing, there are five vehicles (V1, V2, V3, V4, and V5). The 

V1 vehicle connects with the nearest RSU. It can be named 

RSU1 without losing data. In the present scenario, V2 and 

RSU1 communicate with each other because V2 is not in the 

RSU2 and RSU3 ranges. The V3 and V4 vehicles collide, so 

RSU1 falls into the range. Because it is out of range, crash 

information cannot be shared directly with RSU3, as is the 

case with the V2 vehicle. 

The cloud analyzes data to determine whether or not 

an accident has occurred. There are set threshold values; if 

an accident happens, the sensor data offers a superior deal 

than the threshold value. When criteria are met, an alarm 



           

is generated and sent to the car's driver. The hospital will 

not be called if the motorist disregards the signal to avoid 

false reporting. The cloud service will alert the nearest 

hospital if the driver does not respond within 10 seconds. 

The cloud has a database of autos and hospitals. The 

hospital sends an ambulance to the spot for rescue 

operations. Hospitals also have information about 

ambulances. The primary purpose of this design is to 

increase the accuracy of accident identification. The system 

is separated into two stages: detection of accidents and 

notification. These mechanisms are discussed in further 

depth in the sections that follow. Fig. 5 displays a system 

overview.

 
Fig. 5. Proposed approach presentation 

 

The chief aim of the proposed system is to provide an 

architecture that can handle five cases: 1) direct 

communication of the vehicle to the infrastructure; 2) 

automated sharing of accident data; 3) increasing the 

precision of accident detection; 4) reducing fake reports 

and messages; 5) establishing a cost-effective system. Fig. 6 

displays the activities of the presented architecture.



           

 
Fig. 6. Proposed approach flowchart 

 

The most significant variables in this study include 

multi-smartphone sensors, including an accelerometer, 

GPS, pressure, and microphone to detect crashes. As well 

as investigating five proposed approach operations, 

including the possibility of direct communication of the 

vehicle to the infrastructure, automatic exchange of 

accident information, increased accuracy in accident 

detection, reduction of the number of false reports, and the 

creation of a cost-effective system, In the following, it is 

necessary to present a new approach in several different 

sections. The first part deals with the accident detection 

components. 

Phase One: Accident Detection Components (Deep 

Learning Inputs):  



           

   Accident identification is used to avoid occurrences 

that cause damage or injury and minimize the number of 

people killed in traffic accidents. Fig. 7 displays the key 

components used during the accident detection phase. The 

detection process determines the presence of an accident by 

using data from the smartphone's microphone, 

accelerometer, GPS, and pressure sensor. Below is further 

information on the components used in the accident 

detection phase. 

✓ Smartphone accelerometer sensor: This 

component detects accelerometer sensor data to 

calculate acceleration force (or G-force). One of the 

important components for detecting an accident is 

the accelerometer in a smartphone. An accident 

flag is triggered if the acceleration force reaches 4G. 

The 4G threshold number results from a mix of 

secondary studies and testing. Assume a car comes 

to a complete stop but is not involved in an 

accident. It is subjected to less than 1 G of force in 

that situation. 4 G is decided as a threshold for 

raising an accident flag to consider all incidents. 

✓ GPS Technology: This component detects 

accelerometer sensor data to calculate acceleration 

force. An accident flag is triggered if the 

acceleration force reaches 4 G. The 4G threshold 

number results from a mix of secondary studies 

and testing. Assume a car comes to a complete stop 

but is not involved in an accident. In that situation, 

it is subjected to less than 1 G of force. 4 G is 

identified as a threshold for raising an accident 

flag, considering all incidents. 

✓ Pressure sensor: A pressure sensor detects the 

pressure of an automobile in the event of a 

collision. This component also gathers continuous 

pressure data, producing an alarm if the pressure 

reaches a predetermined threshold of 350 Pa. The 

pressure sensor increases the system's accuracy 

and decreases the possibility of incorrect 

identification and accident reporting. 

✓ Smartphone microphone: This component detects 

background noise. When the noise level exceeds 

140 decibels, an accident flag is raised. The built-in 

microphone enhances accuracy and decreases the 

possibility of false positives. The built-in 

microphone detects sound. 

✓ A built-in microphone may detect high-decibel 

sounds when an automobile collides. However, 

passengers laughing, phones falling, or loud music 

contribute to the noise. The sound level is set at 140 

decibels. The microphone is used to increase the 

chance of precisely detecting an accident. The 

accident detection components discussed above 

are shown in Fig. 7.

 
Fig. 7. Components of Accident Detection 



           

Phase Two: Phase of The Notification 

When an accident is detected, effective 

communication and dispatch are vital. The system locates 

an accident using the smartphone's GPS when it is spotted. 

The cloud has a hospital database and employs a mapping 

tool to locate the closest hospital (in our case, the Google 

Maps API). A message containing the location's data and 

owner information is sent to the hospital. The obtained data 

is saved in the current database. Fig. 8 depicts the execution 

of the notification phase. 

 
Fig. 8. The notification system components 

 

Phase Three: Database 

Database of cars: An automobile database provides all 

vital information regarding registered vehicles. 

Information about the owner, name, address, and number 

of automobiles is saved in the cloud to resolve any incident. 

The samples from the automobile database are shown in 

Table 1.

Table 1. Samples of cars database 

ID of owner Name of owner Number of car Name of car ID of car 

36512-4530645-9 Bilal Khaled RAZ 3825 Suzuki  C 1 

33103-9963108-6 Shahid Khalid MP 3509 Landover C 2 

12145-1519307-7 Ali Hosseini LAL 76 4320 Toyota  C 3 

 

Database of Hospitals: The system must be aware of all 

adjacent hospitals to notify them of an emergency. When 

the system sends a message to the cloud, the cloud must 

locate and pass the message to the nearest hospital. Table 2 

displays the information that has been saved.

Table 2. Database of Hospital 

Number of hospital Address of hospital Name of hospital ID of hospital 

+92-42-95231543 Usmani Rd Panjab Jahan H 1 

+92-51-2455613 Kohistan Rd Mumbai Health H 2 

+92-51-9260376 Abid Majeed Rd Delhi Soldierly H 3 

 

Sudden changes in network topology, communication, 

and the modifications necessary to achieve a sustainable re-

establishment of topologies are the main problems with 

Internet of Things-based smart cities. In these networks, 

clustering may be used to lessen these negative effects. Cars 

traveling in the same direction are referred to as being in a 

cluster. It lessens the negative effects of recurrent 

clustering. This study examines the relationship between 



           

cluster size, vehicle speed, traffic, and CW size and their 

effects on closure losses and output efficiency. Picking the 

right cluster for building such networks is another problem. 

As a result, using clustering to collect and transmit 

these requests is a beneficial way of reducing these 

interactions and requests. Due to the absence of direct 

vision and consecutive reflections created by the impact of 

the waves on the mountain slopes, these stations are 

entirely inoperable on hilly routes; if planned, they need to 

be utilized at each place that is not in direct view, which 

would result in a high cost. 

The following assumptions are taken into account in 

the studies:   

✓ The vehicle's relative velocity is considered. 

✓ Elements of the hilly routes' angle of view impede a 

complete view. 

✓ Errors produced by physical layer decoding are 

tolerated. 

✓ Each vehicle is aware of its geographical location by 

implementing GPS and GIS modules.  

✓ This procedure was used to choose the cluster 

based on the weighted method. This study's 

technique is based on the intensity of the received 

signal (RSS). Furthermore, the average signal 

strength received according to Friies' rule is 

recognized throughout the preceding experiments 

(1).  

𝐸(𝑝𝑟𝑒) =
𝑃𝑡𝑟𝐺𝑡𝑟𝐺𝑟𝑒𝜆𝑐

2

16𝜋2𝑑2
 (1) 

In this regard, the distance between the transmitter 

and the receiver is represented by d, as are the transmitter 

power P tr, G, and G re of the transmitter and reception 

antennas (as previously specified). (2) will be used to 

calculate the wavelength of the wireless signal. 

λ𝑡 =
𝑐

𝑓
 (2) 

(2) denotes the speed of light as c and the frequency of 

the wireless channel as f. The US Federal Communications 

Commission's standards and bandwidth necessary to 

interact with end-of-road vehicles in 1999 heralded the 

beginning of a new era in inter-car communication. This 

standard gives inter-car communications a bandwidth of 

5.9 GHz. It is defined on this frequency between seven and 

ten channels (5.850 GHz to 5.926 GHz), with one channel 

especially tailored to boost automobile safety and other 

channels for car-specific applications. To simplify, we'll 

suppose the frequency is in the 5.890 GH range. The 

probability density function of the received signal will be 

obtained as (3), given the channel assumptions. 

𝐹𝑟𝑒(𝑝𝑟𝑒) =
1

𝐸(𝑝𝑟𝑒)
𝑒

−
𝑃𝑟𝑒

𝐸(𝑃𝑟𝑒) (3) 

According to the IEEE 802.11P standard, an 

emergency message is decrypted if the received signal 

intensity is greater than the lowest sensitivity (P min). If 

this is not done, emergency communication will be lost. The 

receiver calculates the signal intensity when the emergency 

message is received. Consequently, the possibility of 

receiving an emergency message within the distance L tr is 

calculated using (4). 
𝑝𝑟𝑠𝑢𝑐𝑐(𝑑) = 𝑝𝑟{𝑝𝑟𝑒 

> 𝑝_ min|𝑙𝑖𝑟 = 𝑑} = 1 − 𝑝𝑟{𝑝𝑟𝑒

≤ 𝑝_ min|𝑙𝑖𝑟 = 𝑑}

= 1

− ∫
1

𝐸(𝑝𝑟𝑒)
𝑒

−
𝑝𝑟𝑒

𝐸(𝑝𝑟𝑒) 𝑑(𝑝𝑟𝑒)
𝑃_𝑚𝑖𝑛 

0

= exp [−
𝑝𝑚𝑖𝑛

𝐸(𝑝𝑟𝑒)
] 

(4) 

If an emergency message is successfully received, the 

intensity of the received signal in the receiver will be 

defined using formula (5). 

𝐸(𝑝𝑟𝑒) = −
𝑃𝑚𝑖𝑛

𝑖𝑛𝑃𝑟𝑠𝑢𝑐𝑐(𝑑)
 (5) 

In addition, the threshold for assessing reliable 

communication using (1) and (5) may be determined by (6). 

𝑝𝑡𝑟 ≥ 𝑝𝑡𝑟,𝑡ℎ = −
16𝜋2𝑑2𝑝𝑚𝑖𝑛

𝐺𝑟𝑒𝐺𝑟𝑒𝜆𝑐
2𝑙𝑛𝑝𝑡ℎ

 (6) 

The threshold parameter, in this case, is 𝑝𝑡ℎ. According 

to the preceding equation, the link between signal strength 

and the chance that the receiver accurately receives the 

message has grown with increasing distance, even when the 

signal intensity is small (for example, approximately 

dBm20). The probability that the receiver will accurately 

receive the message is extreme. This will become stronger 

and stronger when the transmitter's signal power is 

increased. 

The excessive increase in transmitter power, on the 

other hand, will have an impact. 

By raising the transmitter power, because of the 

increased interference, the number of nodes for access and 

posting on the channel will increase.  

Another critical concern is a delay. End-to-end delays 

are calculated by the time it takes to send and receive 

messages. Delays can be classified into three types: queuing 

delays, computational delays, and delayed propagation. 

The primary delay in doing the computations is the release 

delay. 



           

Even though the processing units placed in 

automobiles are capable, this cannot eliminate the delay 

caused by vehicle propagation since wireless networks' 

limited resources produce this delay. So, given the minor 

delays in queuing and processing, treat these as delayed 

emissions. As a result, the emission delay (𝑇𝑡𝑟) is the time 

elapsed between back-off and retransmission in the MAC 

layer.  

The IEEE 802.11P protocol in the MAC layer may be 

used to compute the average emission delay for one step. It 

is assumed the delay comprises the back-off delay (𝑇𝑏𝑎𝑐𝑘) 

and the time required to appropriately receive the packet 

data packet from the receiver (𝑇𝑑𝑎𝑡𝑎). It is the likelihood of 

an emergency message. For the sake of simplicity, assume 

that it is uniform for autos. τ Otherwise, and under typical 

conditions, the τ value is relatively tiny. n is the number of 

cars competing for access to the communication channel, 

including all neighbors within the range of 

telecommunication coverage 𝑅𝑡𝑟).  

According to (7), if a vehicle plans to transmit an 

emergency message, the number of unscreened applicants 

for channel access is defined as 𝑁𝑐. 

𝑁𝑐 = 𝑛𝜏 + 1 (7) 

Back-off is meant to avoid interference when autos 

issue emergency notifications. If the vehicle interferes with 

the message when it receives it, it will reject it (the 

expression "back-off"). In this circumstance, the 

probability of a collision will be defined as (8).  

𝑃𝑅𝑤/0 = 1 −
2𝑤𝑚𝑖𝑛(𝑛𝜏 + 1)

(𝑤𝑚𝑖𝑛 + 1)2 + 2𝑤𝑚𝑖𝑛(𝑛𝜏 + 1)
 (8) 

in (8), 𝑤𝑚𝑖𝑛  denotes the least conceivable CW size, 

which is often believed to be 32. The average number of 

transmitted entries will be specified in (9) concerning the 

maximum transmitting value (𝑙𝑟𝑒) (3-7). 

𝐸(𝑁) = ∑ 𝑁 (1 − 𝑃𝑟𝑤
0

)
𝑁−1

𝑃𝑟𝑤
0

𝑙𝑟𝑒

𝑁=1

 (9) 

If there is no interference channel, the CW will 

automatically double its maximum value 𝑤𝑚𝑎𝑥 = 2𝑚𝑤𝑤𝑖𝑛 . 

Mistake a system parameter, which is presumed to be 5 in 

this case. As 𝑤𝑐𝑜𝑛  approaches its maximum value of 

𝑤𝑚𝑎𝑥  𝑚 + 1, the CW will be used as the maximum in the 

following computations. As a result, (10) defines the 

average latency for a successful post.  

𝑇𝑏𝑎𝑐𝑘

= {
(2𝐸(𝑁) − 1)𝑤𝑚𝑖𝑛 𝜂 ;   𝐸(𝑁) ≤ 𝑚

[(2𝑚 − 1) + 2𝑚(𝐸(𝑁) − 𝑚)]𝑤𝑚𝑖𝑛𝜂; 𝐸(𝑁) > 𝑚
 

(10) 

 𝜂  represents the length of the back-off slots. The 

length of the data transmission (𝑇𝑑𝑎𝑡𝑎 ) is defined as the 

product of the size of the packet message packet (𝐿𝑠𝑖𝑧𝑒) and 

the data transfer rate (𝑀) and will be defined as (11). 

𝑇𝑑𝑎𝑡𝑎 =
𝐿𝑠𝑖𝑧𝑒

𝑀
 (11) 

Combining (10) and (11), we can define the delay in the 

transmission in the form of (12).  

𝑇𝑡𝑟𝑠 = 𝑇𝑏𝑎𝑐𝑘 +
𝐿𝑠𝑖𝑧𝑒

𝑀
 (12) 

In this part, a parameter called M8 will be added to 

define the relay node in the cluster to link the nodes inside 

the cluster to each other. The capabilities of neighbor and 

node relays will be fully utilized. The maximum delay of 

𝑇𝑚𝑎𝑥  is 100 ms based on the reference number. Also, to 

compute the delay factor in one step, the parameter 𝐷∗ is 

introduced, which has a symmetrical connection with the 

𝑇𝑡𝑟  emission delay parameter, so if 𝑇𝑡𝑟is 0, 𝐷∗is equal to 1, 

and vice versa. In other words, the minor 𝐷∗, the smaller 

the larger the delayed 𝑇𝑡𝑟release. As a result, in general, the 

parameter 𝐷∗ will be specified by (13). 

𝐷∗ = {

0 ; 𝑇𝑡𝑟 > 𝑇𝑚𝑎𝑥  

1 −
𝑇𝑡𝑟

𝑇𝑚𝑎𝑥

 ; 𝑒𝑙𝑠𝑒
 (13) 

The parameter 𝐷∗ will have a value between 0 and 1. 

Furthermore, suppose the T tr diffusion delay in one step is 

more significant than 𝑇𝑚𝑎𝑥 . In that case, the value of the 

parameter 𝐷∗will be 0, considered the worst-case scenario. 

Given the specified parameters and (12), the parameter 

value𝑀∗ is defined as (14). 

𝑀∗ = 𝛼𝑃𝑅𝑠𝑢𝑐𝑐(𝑑) + 𝛽𝐷∗ ;  𝛼, 𝛽 ∈ [0,1], 𝛼 + 𝛽 = 1 (14) 

in (14), 𝛼 and 𝛽  indicate the weighting factor of the 

propagation's reliability and latency properties. The 

parameter 𝑀∗'s of changes is similarly between 0 and 1. The 

more significant 𝑀∗symbolizes the sender's and receiver's 

safer and more acceptable communication. In the case of an 

incident and the necessity to transmit an emergency 

message in indirect mode, a node named "Node Relay" 

must be defined as the interface between the incident's 

ninety and the other nodes. In summary, the goal is to send 

an emergency message to 𝑉𝑖 (as ninety) and other devices in 

the danger zone. In this scenario, the purpose is to identify 
a relay node ( 𝑉𝑟𝑒𝑙𝑎𝑦 ) among the automobiles inside the 

hazard range closest to the node (or, in other words, the 

lowest distance to the ninety of the incident). Furthermore, 
the 𝑀∗  parameter between 𝑉𝑡𝑟  and 𝑉𝑟𝑒𝑙𝑎𝑦  should be bigger 

than 𝑀𝑡ℎ
∗ . (15) gives the characteristics for the clustering 

section with the rule R=XY.  



           

𝑃(𝑅) =
𝑃(𝑋𝑌)

|𝐷|
 (15) 

And the probability for the clustering section using 

weighted association rules is expressed as (16).  

𝑃𝑊𝐴𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑜𝑛𝑅𝑢𝑙𝑒𝑠(𝑅) =
𝑃(𝑋𝑌)

𝑃(𝑋)
 (16) 

In the preceding calculations, P(.) is the number of 

data points from the complete set D that includes both X 

and Y. D in our suggested strategy is equivalent to the 

cluster from which the nearest data are chosen. The DSRC 

standard is split into seven 10 MHz frequency bands. The 

frequency band 178 manages other frequency bands to 

provide safe connections to the smart City-based Internet 

of Things. 

 

4. Simulation and Results 

Moving an automobile along a path in a smart city with 

the Internet of Things setup and infrastructure needs 

sensitive GPS information with the lowest possible latency 

and an improved signal-to-noise ratio. The problem of 

capturing vehicle distances and speeds on straight and 

steep mountain bumps must be solved to ensure that the 

network functions properly. Determining traffic 

bottlenecks, traffic, and any accidents over high terrain is 

difficult since it looks like a series of amplifiers are 

necessary. As a result, maintaining speed restrictions for 

autos in all scenarios is seen as critical. Another big issue, 

on the other hand, is the entry of automobiles into the 

tunnel. Satellite and GPS will not be able to transmit in such 

scenarios. Delays in data transfer and transmission will 

drop to a high level, as will the signal-to-noise ratio. Very 

little information will be available to the vehicles, and they 

may get zero kilobytes. This is particularly concerning in 

tunnels since the automobile receives no information. As a 

result, the suggested technique requires an amplifier every 

20 meters within the tunnel, which may result in increased 

expenses for the Smart City with the Internet of Things 

setup and infrastructure, but can overcome this significant 

difficulty to some extent. As a result, the employment of the 

RTS and CTS concepts, as previously indicated, was 

examined in conjunction with channel estimates and the 

identification of communication channels. The data are 

examined, and graphs are generated to evaluate the 

suggested technique. The simulator utilized is NS-3, which 

excels at simulating computer networks. Installing the 

SUMO plugin's final version may also be called a Smart City 

with the Internet of Things setup and infrastructure, as 

shown in Fig. 9, located in Porto, Portugal.

 
Fig. 9. View of the mountainous area of Porto in Portugal 



           

It should be emphasized that not all of these pathways 

are necessary. However, sections of the mountains and the 

tunnel are also taken into account in this study. This route 

and map have been used for all assessments and outcomes. 

Similarly, Xerces C++ is regarded as a function to obtain 

maps that are more recent than Google, and the above map 

of Porto, Portugal, has been acquired in the same manner. 

GeographicLib, a short C++ class that has been used for 

geographical translation, UTM, UPS, MGRS, geocentric 

cartographic coordinates for gravity, geoid size, and 

geomagnetic field computations, is another library that has 

been utilized. Another package named libcurl is a C++ 

library for sending URLs from the client side. This library 

function can support the HTTPS protocol and read Google 

Maps APIs. The coordinates are taken into account when 

the map is opened. In Fig. 10, the coordinates in the target 

region may be determined by considering the X and Y 

coordinates as follows:

 
Fig. 10. X and Y map coordination 

 

It will be feasible to compute the path precisely by 

introducing a Python script called randomtrips.py. 

Requests are a vital component for manually inserting cars 

on the route in the tunnel situation. It should be recognized 

using the coordinates entered in Fig. 10, as specified in the 

manner displayed in Fig. 11.



           

 
Fig. 11. I geographical coordinates are used to identify the area (a mountainous region located in a suburban city, in which the tunnel and the residential 

area are also scattered). 

 

A specific mountain region must be defined to be 

presented in re-coordinates. This area will be increased, as 

illustrated in Fig. 12.

 
Fig. 12. Mountainous area and its roads 



           

The road has two four-way lengths, as indicated in Fig. 

12. In the case of a huge white dot, the components in the 

direct line are vertical, and there are tunnels. As indicated 

in Fig. 13, there should be a specific circumstance in the NS-

Nam scenario.

 
Fig. 13. Simulated scenario in NS-Nam 

 

Specifying the Smart City's first parameters with the 

Internet of Things setup and infrastructure is required. 

Table 3 depicts the starting parameters of a smart city with 

the Internet of Things setup and infrastructure, as specified 

by a reference paper in this field. 

Table 3. Smart City with Internet of Things configuration and infrastructure parameters 

500𝑥500 𝑚2 𝑜𝑟  1000𝑥1000 𝑚2 Network Dimension 

1000 byte Each packet's size 

300 Numbers of Vehicles 

30  km/h Cars with the slowest speeds (in mountainous roads) 

25  km/h Cars with the slowest speeds (in mountainous tunnels) 

20m Each vehicle's radio radius 

0.02 Jul Each vehicle's sender's energy 

0.04 Jul Each vehicle's receiver energy 

2 sec Per-second fuel usage 

4000 The number of available ports in a particular network setup 

5m The length of each path (on one side of the road) 

OFDM Modulation Schematic 

21 dB Data transmission power  

6 MB/s Rate of data transition 

 

In the OFDM channels, the modulation type is 

separated into two sections: QPSK on the road and 64QAM 

in the tunnels. At first, the packet rate, or PDR metric, will 

be shown as shown in Fig. 14.



           

 
Fig. 14. PDR analysis 

 

PDR is calculated by (17). 

𝑃𝑎𝑐𝑘𝑒𝑡𝐷𝑟𝑜𝑝𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛 =
𝑆𝑒𝑛𝑡𝑃𝑎𝑐𝑘𝑒𝑡_𝑁𝑢𝑚𝑏𝑒𝑟

𝑅𝑒𝑐𝑖𝑒𝑣𝑒𝑑𝑃𝑎𝑐𝑘𝑒𝑡𝑁𝑢𝑚𝑏𝑒𝑟

 (17) 

The summary of (17) is also (18). 

𝑃𝑎𝑐𝑘𝑒𝑡𝐷𝑟𝑜𝑝𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛  

= (∑
𝑃𝑎𝑐𝑘𝑒𝑡𝐷𝑟𝑜𝑝𝑁𝑢𝑚𝑏𝑒𝑟

𝑆𝑒𝑛𝑡𝑃𝑎𝑐𝑘𝑒𝑡𝑁𝑢𝑚𝑏𝑒𝑟

) × 100

4

𝑖=1

 
(18) 

i is the index of summation according to the above two 

relations. Fig. 6 depicts the packet loss rate under various 

traffic situations and tunnel congestion, which causes 

delays in transmitting and receiving data. When network 

resources are shared, the outcome reveals a high rate of 

PDR. PDR is evaluated at zero intervals; just one vehicle is 

in the covered zone and uses network resources (simulation 

start). Of course, this does not imply that the PDR will be 

assessed just for an automobile, even if a car fills the area. 

The end-to-end latency may be calculated using PDR and 

displayed as an analytical chart, as illustrated in Fig. 15.



           

 
Fig. 15. End-to-end analysis 

 

End-to-end latency analysis is obtained by keeping 

varied traffic circumstances in mind and is closely 

connected to PDR. The amount of congestion determines 

the end-to-end latency during routing and the time lag on 

the output channel for data transmission. (19) calculates 

the average end-to-end latency. 

𝑛 − 𝑡𝑜 − 𝑛𝑑𝑒𝑙𝑎𝑦 =
𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒 𝑖𝑛 𝑑𝑒𝑙𝑎𝑦

4
      ,      𝑢𝑛𝑖𝑡 

= 𝑚𝑠 
(19) 

The simulation's throughput is determined depending 

on runtime, input condition, and vehicle unavailability in 

the network coverage region. Average throughput was 

computed using (20). 
𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡𝐴𝑣𝑔

= (∑
𝑅𝑒𝑐𝑖𝑒𝑣𝑒𝑑𝑃𝑎𝑐𝑘𝑒𝑡𝑁𝑢𝑚𝑏𝑒𝑟  × 𝑃𝑎𝑐𝑘𝑒𝑡𝑆𝑖𝑧𝑒 

𝑇𝑜𝑡𝑎𝑙 𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒
)  

4

𝑖=1

× 100 

(20) 

The output of throughput is like Fig. 16. 



           

 
Fig. 16. Throughput analysis 

 

According to an analysis, the ID 1 vehicle was 

withdrawn from the envelope in 1.1 seconds, whereas the 

vehicle with ID 2 began sending data in 20 seconds. The 

results of two-time delays demonstrate a significant 

decrease in bit rate. The NS section will review the work, 

which evaluates the evaluation by gathering this data and 

entering it into Excel software. Fig. 17 depicts a 300-second 

performance evaluation of an automotive network as the 

number of nodes or autos along with mountain route 

increases. The outcomes are as follows:

 
Fig. 17. Displays a performance evaluation of an automotive network in a 300-second scenario 
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As stated before, DSRC vehicles are the network's 

default protocol. The delivery and data loss rates of the 

protocol were compared to those of two other protocols, 

AODV and AOMDV, before a suggested method that 

utilized a weighted algorithm, SPA-(S, P), for improved 

resilience in any segment, was implemented. Results are 

shown in Figs. 18 and 19.

 
Fig. 18. Comparison of delivery rates of packages 

 
Fig. 19. Data loss rate or packet loss rate comparison 
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Fig. 18 shows that the proposed method outperforms 

the two AODV and AOMDV protocols in terms of packet 

delivery rate and is better adapted to deal with packet loss 

rates. As a consequence, data transmission and reception 

are quicker, and the permeability is higher. Fig. 20 displays 

a sustained routing comparison. The recommended routing 

stability protocol has been shown to be superior to the 

AODV and AOMDV protocols based on this outcome.

 
Fig. 20. A comparison of routing stability. 

 

Because the modulation sections' output cannot be 

observed in the NS-3 environment, the current codes are 

brought into the MATLAB environment, and the results are 

also inserted in this part. This section has been added to the 

OFDM channels, and the modulation type is separated into 

two sections: QPSK on the road and 64QAM in the tunnels. 

Fig. 21 shows the bit error rate.

 
Fig. 21. Proposed method bit error rate 
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It looks like the bit error rate is decreasing. The graph 

shows that there is a low likelihood of bit errors on hilly 

paths by E b/N o and dB. Low does not always mean bad; 

rather, it denotes a reduction in data inaccuracy, which may 

include disturbances like noise. However, as can be seen at 

the bottom of this image, entering the tunnel caused a 

minor increase in bit error rate relative to the falling 

mountain's default state. This rise should not be 

disregarded. As seen in Fig. 22, when the bit error rate is 

decreased, the latency is also decreased.

 
Fig. 22. Delay or latency rate 

 

The delay is expressed in 𝐸𝑏/𝑁𝑜units, indicating that it 

is minimized. Reduced bit error rates and delays will result 

in shorter latencies. Figs. 23 and 24 show this in the form 

of analysis (24).

 
Fig. 23. The statistical study results are throughput, bit error rate, latency, and energy in the simulated beginning time. 



           

 
Fig. 24. Statistical analysis results include throughput, bit error rate, latency, and energy in the final simulation. 

 

The network's principal energy was a total of 200 

Jules. It is noted that energy is utilized at 100 Jules from 

the beginning to the conclusion of the simulation. Similarly, 

the permeation was based on Fig. 15 at the start of 

Simulation 2, which reached 11 at the end of the simulation, 

demonstrating development. The bit error rate began at 

four and ended at two. As cars enter the tunnel, bit rate 

error rates increase in portions of the bit rate, as illustrated 

in Fig. 13, which is evident in statistical analysis. The delay 

was there from the start of Simulation 1 and eventually 

dropped to zero. Nonetheless, the ups and downs of high-

altitude access and tunnels have implications. 

 

5. Conclusion 

In recent years, the number of vehicles in metropolitan 

areas has increased substantially. Accidents have grown as 

a result of increased traffic. Despite the introduction of 

different accident detection devices to the market, a 

significant number of fatalities occur. The problem stems 

from a failure to respond to significant accidents on time, 

which is caused by insufficient automated accident 

detection and inefficient emergency response 

communication and routing. The lack of efficient pricing 

and retrofit capacity systems exacerbates the problem 

significantly. We propose an IoT-based accident detection 

system to solve these problems. We demonstrated how 

using various sensors may help more precisely recognize a 

traffic incident. The proposed system immediately 

identifies an accident, locates the nearest hospital, and 

sends an emergency help request to the relevant hospital 

department. This technology makes a decision based on 

data from smartphone sensors that detect information 

about the vehicle's status. We proved that our suggested 

method minimizes the number of false alarms. Our system 

requires Internet connectivity to function correctly. One 

disadvantage of our study is that we conducted the system's 

primary assessment in a simulated circumstance. We want 

to improve the system by implementing mobile edge 

computing to minimize latency while boosting security and 

privacy. Indeed, the technique requires a thorough 

examination. 
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