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Highlights 
 

➢ Exploration of settlement simulation in cohesionless soils, addressing the complex characteristics of cohesionless soil texture. 

➢ Development of integrated data intelligence algorithms, combining the reptile search algorithm (RSA) with support vector 
regression (SVR) and adaptive neuro-fuzzy inference system (ANFIS). 

➢ Evaluation of the RSANF and RSSVR systems, showcasing adept capabilities in estimating shallow foundation settlement 
(S_m). 

➢ Achievement of smaller performance index (PI) values for RSANF during the training and test stages, indicating superior 
precision compared to RSSVR. 

➢ Introduction of a novel approach to enhance the accuracy of forecasting models, contributing to a better understanding of 
predicting settlement in cohesionless soils. 

 

Article Info   Abstract 

The complex characteristics of cohesionless soil texture necessitate an examination of settlement 
simulation in cohesionless materials, making it a fundamental area of inquiry. This article discusses 
the development of integrated data intelligence algorithms with the objective of improving the 
reliability and accuracy of estimate results for shallow foundations (𝑆𝑚) on cohesionless soils. The 
proposed models integrate the reptile search algorithm (𝑅𝑆𝐴) with support vector regression (𝑆𝑉𝑅) 
analysis and adaptive neuro-fuzzy inference system (𝐴𝑁𝐹𝐼𝑆). Based on the findings of the research, 
it can be seen that the 𝑅𝑆𝑆𝑉𝑅 and 𝑅𝑆𝐴𝑁𝐹 systems have shown adept capabilities in the domain of 
estimate. During the training stage, the 𝑅𝑆𝐴𝑁𝐹 simulation gained the smallest performance index 
(𝑃𝐼) value of 0.0668, which was smaller than the 𝑃𝐼 of 0.0993 for 𝑅𝑆𝑆𝑉𝑅. Similarly, during the test 
stage, the 𝑅𝑆𝐴𝑁𝐹 simulation acquired a 𝑃𝐼 of 0.0904, which was fewer than the 𝑃𝐼 of 0.1038 related 
to 𝑅𝑆𝑆𝑉𝑅. The constituents mentioned above offer a new approach to enhance the precision of 
forecasting models and further our comprehension of predicting the 𝑆𝑚. 
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Nomenclature 

Variables Description Variables Description 

𝐴𝑁𝐹𝐼𝑆 Adaptive neuro-fuzzy inference system PI Performance index 

𝐴𝑁𝑁 Artificial neural network 𝑃𝑆𝑂 Particle swarm optimization 

𝐵 Footing width 𝑞 Footing net applied pressure 
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BPNN back-propagation neural network q_u Carrying capacity 

𝐷𝑓/𝐻 Depth of footing embedment R^2 Coefficient of determination 

𝐿/𝐵 The ratio of footing length to B RAE Relative absolute error 

MAE Mean absolute error RBF Radial basis function 

MARS Multivariate adaptive regression splines RRSE Root relative squared error 

𝑀𝐿𝑃 multi-layer perceptron 𝑅𝑆𝐴 Reptile search algorithm 

MPMR Minimax Probability Machine Regression 𝑅𝑆𝑀 Response surface method 

𝑁 Average SPT below count SCA Sine-cosine algorithm 

NID Neural Interpretation Diagram 𝑆𝑚 shallow foundations  

NRMSE Normalized root mean squared error 𝑆𝑉𝑅 Support vector regression 

 

1. Introduction 
Due to the intrinsic stochasticity of the soil formation 

process, the soil parameters display a considerable level of 

inherent uncertainty that is dependent on the current site 

circumstances. Hence, it is essential to consider all 

variations in its properties before building any structure on 

the ground. The soil's carrying capacity (𝑞𝑢) and foundation 

settlement (𝑆𝑚) are the two main factors that influence the 

planning of shallow foundations. Furthermore, settlement 

is the main factor that primarily affects the design of 

shallow foundations rather than 𝑞𝑢 [1]. In the conventional 

design of shallow foundations constructed on cohesive soil, 

empirical formulas that are based on settlement criteria 

and permissible 𝑞𝑢 are commonly utilized. To ascertain the 

allowable 𝑞 of a shallow foundation, it is imperative to 

divide the ultimate 𝑞𝑢 by a factor of safety. Moreover, the 

factor of safety approach is frequently utilized to compute 

the 𝑆𝑚 owing to its simplicity and its capacity to establish a 

direct correlation with settlement. However, the simulation 

does not incorporate the possible uncertainties related to 

the parameters that affect the characteristics of the soil [2–

4]. Phoon [5] has established that the variability observed 

in test data can be attributed to two factors: errors in testing 

and variations in soil deposits. The research conducted a 

comprehensive reliability analysis considering the diverse 

soil properties range. The input parameters were 

considered stochastic factors, and diverse algorithms were 

employed to examine their influence on the targets. Several 

academics have utilized a probabilistic approach, utilizing 

either data from standard penetration tests or 

consolidation tests, to develop algorithms based on 

probabilistic principles with the aim of predicting total 𝑆𝑚 

[6]. Cherubini [7] introduced a probabilistic approach to 

ascertain the ultimate 𝑞𝑢 of a shallow foundation footing on 

cohesionless soil. This method entails employing a 

proficient solution for the friction angle. Easa [8] utilized a 

probabilistic methodology that incorporated two variables, 

namely effective frictional angle and soil unit weight, to 

ascertain the ultimate bearing capacity 𝑞𝑢 of shallow 

foundations that are located on cohesionless soil. The 

study's results suggest that alterations in unit weight have 

a substantial effect on the ultimate 𝑞𝑢 of shallow 

foundations. 

Various academics have used numerous 

methodologies to undertake reliability analysis. To create 

an approximated polynomial function, Babu and Srivastava 

[9] used the response surface method (𝑅𝑆𝑀) and a valid set 

of soil characteristics as a parameter set for the estimation 

of 𝑆𝑚  and 𝑞𝑢.  In order to predict shallow 𝑆𝑚 on granular 

soil, Shahin et al. [10] first defined two separate modeling 

approaches, namely multi-layer perceptron (𝑀𝐿𝑃s) and B-

spline Neuro-fuzzy networks. The largest surface 𝑆𝑚 

resulting from tunneling was predicted in the research of 

Hasanipanah et al. [11] using the particle swarm 

optimization artificial neural network (𝑃𝑆𝑂 − 𝐴𝑁𝑁) 

method. The results showed that the 𝑃𝑆𝑂 − 𝐴𝑁𝑁 

outperformed the standard 𝐴𝑁𝑁 system in terms of 

reliability in forecasting the maximum surface 𝑆𝑚. 

According to Tarawneh's [12] research, the utilization of 

back-propagation neural network (𝐵𝑃𝑁𝑁) in predicting 

𝑁60-value through 𝐶𝑃𝑇 data resulted in high accuracy (𝑅2 =

 0.95,𝑀𝐴𝐸 =  2.88).  

Recent literature may be used to reference more 

machine learning approaches and the reliability analysis 

conducted [13–16]. The 𝑆𝑚 induced by liquefaction for 

buildings with weak foundations may be calculated simply 

because to fascinating research, which defined the process 

in detail. The multivariate adaptive regression splines 

(𝑀𝐴𝑅𝑆) method is chosen [17]. To determine the 𝑆𝑚 of a 

shallow strip footing resting on granular soils as a 

consequence of the interplay of static and cyclic loads, an 

𝐴𝑁𝑁 framework equation was created in study. To explore 

how input elements impact output, the Neural 

Interpretation Diagram (𝑁𝐼𝐷) is utilized [18]. The potential 

of the soft computing technique—more particularly, 

Gaussian process regression (𝐺𝑃𝑅)—was investigated to 

anticipate 𝑞𝑢 of cohesionless soils under shallow 

foundations. Based on the results obtained, it can be 

concluded that the generated 𝐺𝑃𝑅 proved to be a 

dependable technique for the precise estimation of shallow 

foundations situated on soil with low cohesion [19]. 𝐴𝑁𝑁s 

have been employed in various studies to predict the 
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settlement of a foundation on sandy soil. The demonstrated 

precision of the proposed formula highlights the significant 

potential of 𝐴𝑁𝑁s as a forecasting tool for predicting 

foundation settlement on sandy soils [20]. A recent study 

has shown specific interest in utilizing recently created 

machine learning methods, such as the combined 

optimization-based 𝐴𝑁𝐹𝐼𝑆 methods, as efficient means for 

predicting 𝑆𝑚 over cohesion soil properties. The findings 

indicate that the 𝐴𝑁𝐹𝐼𝑆 − 𝑃𝑆𝑂 exhibited superior 

predictive capacity compared to the other models 

employed, and demonstrated precise and reliable 

predictive data intelligence [21]. The study explores the 

reliability of shallow foundations in meeting settlement 

requirements through the implementation of three soft 

computing techniques. Based on the results of the analysis, 

it was determined that the Minimax Probability Machine 

Regression (𝑀𝑃𝑀𝑅) system outperformed other systems 

[21]. The study aimed to predict the settlement of a shallow 

foundation on granular soil by employing a mathematical 

model. The findings indicate that 𝐴𝑁𝑁 models possess the 

ability to predict intricate relationships among non-linear 

variables, as observed in the present case [22]. Moreover, 

regarding to the considered methods and optimization 

algorithm in this study (i.e., 𝑆𝑉𝑅, 𝐴𝑁𝐹𝐼𝑆 and 𝑅𝑆𝐴), it is 

worth to assess the successful application of them in 

prediction processes. So limited usages were reported in 

the literature such as predicting COVID-19 [23], analyzing 

groundwater level [24], and monthly streamflow prediction 

[25]. 

The current article presents the establishment of 

combined data intelligence algorithms aimed at providing 

more dependable and precise 𝑆𝑚 estimation outcomes. 

These models combine the reptile search algorithm (𝑅𝑆𝐴) 

with support vector regression (𝑆𝑉𝑅) analysis and adaptive 

neuro-fuzzy inference system (𝐴𝑁𝐹𝐼𝑆). Optimization 

techniques facilitated the identification of the optimal 

primary variable value for both the 𝑆𝑉𝑅 model and the 

𝐴𝑁𝐹𝐼𝑆. The viability of the blended algorithms under 

investigation was established based on the consideration of 

𝑆𝑚 throughout the literature review.  

The main benefit of the proposed networks is their 

ability to accurately model the complex relationship 

between the inputs (important qualities) and the outputs 

(goal parameters) without the need for a predetermined 

mathematical equation. Following this, the results are 

evaluated and contrasted with the findings documented in 

prior academic literature. This work is noteworthy for 

various reasons, including the incorporation of 𝑅𝑆𝐴, the 

comparison with pertinent literature, and the exploitation 

of a comprehensive dataset including several input 

variables. The aforementioned parts provide a novel 

methodology for improving the accuracy of forecasting 

models and deepening our understanding of predicting  𝑆𝑚. 

 

2. Dataset 
The dataset employed in this study to develop 

prediction models was obtained from various previously 

published scholarly articles. The dataset comprises 

essential information regarding the in-situ measurement of 

𝑆𝑚 for the footing and soil under diverse conditions. The 

criteria include several modifications to the geometry 

requirements of the footing as well as changes to the soil's 

classification and characteristics. Interestingly, adding a 

wide variety of data to the dataset might improve the 

precision of the created algorithms. Important parameters 

were introduced as input, like footing width (𝐵), footing net 

applied pressure (𝑞), average 𝑆𝑃𝑇 below count (𝑁), the ratio 

of footing length to 𝐵 (𝐿/𝐵), and depth of footing 
embedment (𝐷𝑓/𝐻), to predict 𝑆𝑚 [10,17,18,20,22]. The 

dataset includes around 190 occurrences of in-situ analyses 

of elastic 𝑆𝑚 [26]. Based on the data dividing literature [27–

29], the collection experienced a partitioning procedure 

into two separate phases, namely the training and testing 

data phases, with a percentage of 75% and 25%, 

respectively, to accomplish the desired purpose. The 

statistical characteristics of the dependent 

and independent variables throughout the training and 

testing phases are shown in Table 1. Fig. 1 shows the 

distribution of the dependent and independent variables.

 

Table 1. The dependent and independent variables’ characteristics 

Data Index 
𝑩 

(𝒎) 
𝒒 

(𝒌𝒑𝒂) 
𝑵 

𝑫𝒇

𝑯
 𝑳/𝑩 

𝑺𝒎 
(𝒎𝒎) 

𝑻𝒓𝒂𝒊𝒏  𝑀𝑎𝑥. 60 697 60 3.44 10.60 121 

𝑀𝑖𝑛. 0.80 18.32 4.0 0.0 1.00 0.6 
𝑆𝑡. 𝑑. 9.0428 123.401 13.09 0.5286 1.731 25.4178 
𝐴𝑣𝑔. 7.99 186.13 24.58 0.51 2.22 19.43 
𝑚𝑒𝑑𝑖𝑎𝑛  4.55 151.60 20.00 0.47 1.60 11.00 
𝑆𝑘𝑒𝑤. 2.4351 2.0062 0.847 2.5254 2.005 2.435 
𝐾𝑢𝑟. 7.867 4.555 0.158 8.7215 4.623 5.0631 

𝑻𝒆𝒔𝒕 𝑀𝑎𝑥. 55 584 60 3.0 9.9 120 
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𝑀𝑖𝑛. 0.9 25 4.0 0.0 1.0 1.3 
𝑆𝑡. 𝑑. 12.587 121.4229 14.66 0.70183 1.9676 29.456 
𝐴𝑣𝑔. 11.15 190.01 24.55 0.61 2.11 23.51 
𝑚𝑒𝑑𝑖𝑎𝑛  5.10 162.00 20.00 0.40 1.10 10.90 
𝑆𝑘𝑒𝑤. 1.647 1.41 0.672 1.9967 2.588 2.05446 
𝐾𝑢𝑟. 2.564 2.619 -0.304 4.184 6.755 3.681 

 

  

(𝑖1) (𝑖2) 

 
 

(𝑖3) (𝑖4) 
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(𝑖5) 

Fig. 1. Distribution of the input variables versus 𝑆𝑚 

 

3. Used optimization and methods 
3.1.  Reptile search algorithm (𝑹𝑺𝑨) 

The reptile search method mostly emulates crocodiles’ 

predation method and the social manner in nature [30]. 

The first occurs during the exploration stage as the 

encirclement technique, and the second occurs during the 

exploitation stage as the hunting technique. Before the 

iteration begins, a collection of potential answers is often 

subjected to a normal 𝑀𝐻 method. It is a created approach 

at random. 

𝑍 =

[
 
 
 
 
 

𝑍1,1 …

𝑍2,1 …

𝑍1,𝑗 𝑍1,𝑑−1

𝑍2,𝑗 …

𝑍1,𝑑

𝑍2,𝑑

⋮      ⋮
𝑍𝑁−1,1 …

⋮      ⋮
𝑍𝑁−1.𝑗 …

⋮
𝑍𝑁−1,𝑑

𝑍𝑁.1 … 𝑍𝑁,𝑗 𝑍𝑁.𝑑−1 𝑍𝑁,𝑑 ]
 
 
 
 
 

 (1) 

 
Based on this equation, 𝑍𝑖,𝑗 shows the 𝑖𝑡ℎ crocodile’s 𝑗𝑡ℎ 

dimension. 𝑁 stands for whole crocodiles, and 𝑑 shows 

dimension. 𝑍 stands for 𝑁 potential answers accidentally 

produced by Eq. (2).  
𝑍𝑖,𝑗 = 𝑟𝑎𝑛𝑑 × (𝑢𝑝 − 𝑙𝑜𝑤) + 𝑙𝑜𝑤  (2) 

Based on Eq. (2), 𝑙𝑜𝑤 and 𝑢𝑝 show the lowest limit and 

highest limits of the optimization issue, and 𝑟𝑎𝑛𝑑 denotes 

an accidental number. 

The distinctive feature of 𝑅𝑆𝐴's worldwide search is 

the encircling manner. Two manners—aerial and 

abdominal walk—make up the procedure. Crocodiles are 

often prevented from approaching food by these two 

manners. Nevertheless, since it is a worldwide search of the 

entire resolved spatial domain, the crocodile will 

accidentally discover the general region of the specific meal 

after multiple searches tries. Make sure the phase can be 

continually adjusted to the subsequent developmental 

phase in the meantime. The procedure is often restricted to 

the first stage of the whole cycle. Eq. (3), seen below, 

mimics the crocodile's encircling action. 
𝑍𝑖,𝑗(𝑡 + 1) =

{
𝑏𝑒𝑠𝑡𝑗(𝑡) × (−𝜂𝑖,𝑗(𝑡)) × 𝛽 − 𝑅𝑖,𝑗(𝑡) × 𝑟, 𝑡 ≤

𝑇𝑀𝑎𝑥

4

𝑏𝑒𝑠𝑡𝑗(𝑡) × 𝑍𝑟1,𝑗 × 𝐸𝑆(𝑡) × 𝑟,
𝑇𝑀𝑎𝑥

4
≤ 𝑡 <

2×𝑇𝑀𝑎𝑥

4

  
(3) 

According to this equation, 𝑏𝑒𝑠𝑡𝑖,𝑗(𝑡) shows the finest-

situated crocodile at 𝑡 iterations, and 𝑟 shows an accidental 

number in the range [0,1]. 𝑇𝑀𝑎𝑥  shows the highest iteration. 
𝜂𝑖,𝑗 stands for the 𝑖𝑡ℎ crocodile’s operator at the 𝑗𝑡ℎ 

dimension and presented by Eq. (4). The sensitive variable 

𝛽, which controls the search precision, is stated in the 

original text as 0.1 [30]. Eq. (5) is utilized to reduce the 
searched region and computes 𝑅𝑖,𝑗, which is the reduction 

function. A random number between 1 and 𝑁 is called 𝑟1, 
and the crocodile's jth dimension is called 𝑍𝑟1,𝑗. Eq. (6) 

states that 𝐸𝑆(𝑡) is an optional lowering possibility ratio 

between 2 and -2. 
𝜂𝑖,𝑗 = 𝑏𝑒𝑠𝑡𝑖,𝑗(𝑡) × 𝑃𝑖,𝑗  (4) 

𝑅𝑖,𝑗 =
𝑏𝑒𝑠𝑡𝑗(𝑡)−𝑥𝑟2,𝑗

𝑏𝑒𝑠𝑡𝑗(𝑡)+𝜀
  (5) 

𝐸𝑆(𝑡) = 2 × 𝑟3 × (1 −
1

𝑇
)  (6) 

Based on these equations, 𝑟2 stands for an accidental 

number in the range [1, 𝑁], and 𝑟3 stands for a number in 
the range [-1,1]. 𝜀 shows a low value. 𝑃𝑖,𝑗, updated as in Eq. 
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(7), stands for the percentage gap between the crocodile in 

the ideal location and the present location.  

𝑃𝑖,𝑗 = 𝛼 +
𝑧𝑖,𝑗−𝑀(𝑧𝑖)

𝑏𝑠𝑒𝑡𝑗(𝑡)×(𝑢𝑝𝑗−𝑙𝑜𝑤𝑗)+𝜀′
  (7) 

In this equation, 𝑀(𝑧𝑖) shows the 𝑧𝑖 Crocodile’s mean 
location is presented in Eq. (8). 𝑙𝑜𝑤𝑗 and 𝑢𝑝𝑗 show the 

lowest limit and highest limit of the 𝑗𝑡ℎ dimension. 𝛼 stands 

for a sensitive variable to maintain the search precision the 

same as 𝛽. It was fixed to 0.1 in the main study [30]. 

𝑀(𝑧𝑖) =
1

𝑛
∑ 𝑧𝑖,𝑗

𝑛
𝑗=1   

(8) 

The hunting procedure of local symbolic exploitation, 

that has two tactics in this section: coordination and 

cooperation, is linked to the 𝑅𝑆𝐴’s search procedure. 

Following the encirclement technique’s effect, the 

crocodiles nearly always know where to find their hunt, and 

their hunting tactics will make it simpler for them to come 

close to their hunt. Over multiple rounds, the development 

process often discovers the almost ideal potential answer. 

Eq. (9) presents its simulated crocodile hunting manner’s 

mathematical model. In the iterations’ second part, this 

development hunting technique is implemented.  
𝑧𝑖,𝑗(𝑡 + 1) =

{
𝑏𝑒𝑠𝑡𝑗(𝑡) × 𝑃𝑖,𝑗(𝑡) × 𝑟,

2×𝑇𝑀𝑎𝑥

4
≤ 𝑡 <

3×𝑇𝑚𝑎𝑥

4

𝑏𝑒𝑠𝑡𝑗(𝑡) − 𝜂𝑖,𝑗(𝑡) × 𝜀 − 𝑅𝑖,𝑗(𝑡) × 𝑟,
3×𝑇𝑚𝑎𝑥

4
≤ 𝑡 <

4×𝑇𝑀𝑎𝑥

4

  
(9) 

In Eq. (9), 𝑏𝑒𝑠𝑡𝑗 stands for the crocodile’s best location, 

𝜂𝑖,𝑗 show the 𝑖𝑡ℎ crocodile’s operator at 𝑗𝑡ℎ dimension and is 

presented in Eq. (4). 𝑅𝑖,𝑗 shows the decrease function, and 

this equation is utilized to reduce the searched region and 

calculated by Eq. (5). 𝑅𝑆𝐴 is represented by the pseudocode 

of Algorithm 1. 

Algorithm 1: the 𝑅𝑆𝐴’s framework [30] 

1: input: The RSA’s variables containing the sensitive variables 𝛼, 𝛽, crocodile size (𝑁), and the highest generation 𝑇𝑀𝑎𝑥  

2: initializing 𝑛 crocodile, 𝑧𝑖 and compute 𝑓𝑖 
3: specify the finest crocodile 𝑏𝑒𝑠𝑡𝑗 

4: while (𝑡 ≤ 𝑇𝑚𝑎𝑥) do 

5: Eq. (6) update the 𝐸𝑆 

6: for 𝑖 = 1 to 𝑁 do 

7: for 𝑖 = 1 to 𝑁 do 

8: using Eqs. (4), (5), and (7) compute the 𝜂, 𝑅, 𝑃 

9: if 𝑡 ≤ 𝑇𝑀𝑎𝑥/4 then 
10: 𝑧𝑖,𝑗(𝑡 + 1) = 𝑏𝑒𝑠𝑡𝑗(𝑡) × 𝜂𝑖,𝑗 × 𝛽 − 𝑅𝑖,𝑗 × 𝑟 

11: else if 
𝑇𝑀𝑎𝑥

4
≤ 𝑡 < 2 × 𝑇𝑀𝑎𝑥/4 

12: 𝑧𝑖,𝑗(𝑡 + 1) = 𝑏𝑒𝑠𝑡𝑗(𝑡) × 𝑧𝑖,𝑗 × 𝐸𝑆(𝑡) × 𝑟 

13: else if 
2×𝑇𝑀𝑎𝑥

4
≤ 𝑡 <

3×𝑇𝑚𝑎𝑥

4
 

14: 𝑧𝑖,𝑗(𝑡 + 1) = 𝑏𝑒𝑠𝑡𝑗(𝑡) × 𝑃𝑖,𝑗(𝑡) × 𝑟 

15: else 
16: 𝑧𝑖,𝑗(𝑡 + 1) = 𝑏𝑒𝑠𝑡𝑗(𝑡) − 𝜂𝑖,𝑗(𝑡) × 𝜀 − 𝑅𝑖,𝑗(𝑡) × 𝑟 

17: end if 

18: end for 

19: end for 

20: obtain the finest crocodile. 

21: 𝑡 = 𝑡 + 1. 

22: end while  

23: output: the finest crocodile.  

 
3.2. Support vector regression (𝑺𝑽𝑹) 

Support vector machines (𝑆𝑉𝑀) were first developed 

to address categorization difficulties, and later they were 

expanded to address regression issues (𝑆𝑉𝑅) [31]. This 

methodology's central concept is to find points near a 

hyperplane (support vectors) which optimize the distance 

among two-point categories (points higher and lower than 

the objective parameter) derived from the variance among 

the objective value and a threshold. By attempting to reduce 

the higher limit of the generalization fault rather than the 

training fault, this technique seeks to reduce the structural 

hazards in regression issues.  

Since most practical issues exhibit nonlinear 

properties, the kernel notion may be added to the 𝑆𝑉𝑅 

technique. The intrinsic properties of the data may be 

mapped utilizing kernel functions. Numerous kernel 

functions, including radial basis, Gaussian, linear, and 

polynomial are employed in the literature. The linear kernel 

is employed in this paper's two case research that may be 

described as 
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𝑘(𝑥𝑖 , 𝑥𝑗) = 𝑥𝑖
′𝑥𝑗  (10) 

This is the same as the inner product of the 
observations 𝑥𝑖

′and 𝑥𝑗  in some characteristic areas. The 

variable cost ought to be established when this kernel is 

employed. This variable is acquired in this context using 

grid search during the cross-validation process. 

On the one hand, 𝑆𝑉𝑅's ability to take 

forecaster nonlinearities and then utilize them to enhance 

price forecasts is one of the key benefits of using it for the 

case research selected in this research, particularly for 

layer-1 in the 𝑆𝑇𝐴𝐶𝐾 technique. Similarly, given the limited 

sample sizes in the chosen case research, it is appropriate 

to use this approach [31]. However, the data collection's 

fundamental drawback is connected to the selected kernel 

function. Making the wrong choice while using a function 

might result in inaccurate results. The main goal in the 𝑆𝑉𝑅 

process is to choose the optimal values for crucial 

parameters, notably 𝐶, 𝑔𝑎𝑚𝑚𝑎, and 𝜀. The 𝑅𝑆𝐴 method is 

used in conjunction with the 𝑆𝑉𝑅 model to accomplish this 

goal. These parameters were examined in several 

combinations, covering a range of values. 𝐺𝑎𝑚𝑚𝑎 ranged 

from 0.05 to 5, 𝜀 varied from 0.05 to 5, and 𝐶 was 

investigated in the range of 1 to 700. 

 
3.3. Adaptive neuro-fuzzy inference system 

(𝑨𝑵𝑭𝑰𝑺) 

According to fuzzy logic theory, a fuzzy interface 

system employs a set of statements, specifically fuzzy if-

then rules, to translate the input to result data [32].  

Before being completely de-fuzzified into crisp results, 

the fuzzy inputs are translated to fuzzy results. The 𝐴𝑁𝐹𝐼𝑆 

model is composed of five levels, every one of which is 

comprised of inputs and results from the one before it. The 

following describes the first level's adaptive nodes:  
𝑂1,𝑖 = 𝜇𝐴𝑖−2

(𝑥)  (11) 
𝑂1,𝑖 = 𝜇𝐵𝑖−2

(𝑦)  (12) 

Based on these equations, 𝑦 and 𝑥 stand for the inputs, 
𝐴 and 𝐵 show linguistic labels, 𝜇𝐴𝑖−2

(𝑥) and 𝜇𝐵𝑖−2
(𝑦) show 

the membership function’s degrees, and 𝑂1,𝑖 stands for the 

first level’s result. According to membership functions, the 

first level’s inputs are fuzzified into membership values 
(𝜇𝐴𝑖−2

(𝑥)).  

In the 𝐴𝑁𝐹𝐼𝑆 model, a bell-shaped function is often 

utilized: 

𝜇(𝑥) = 𝑒𝑥𝑝 (− (
𝑥−𝑐𝑖

𝑎𝑖
)

2

)  (13) 

In Eq. (13), 𝑎𝑖 and 𝑐𝑖 show the premise variables. The 

second level's results—known as firing strengths—are 

calculated using the multiplication of the incoming signals. 
𝑂2,𝑖 = 𝜔𝑖 = 𝜇𝐴𝑖

(𝑥). 𝜇𝐵𝑖
(𝑦) (14) 

According to Eq. (14), 𝑂2,𝑖 defines the second level’s 

results. The firing power of the 𝑖𝑡ℎ node is compared to the 

firing power of entire rules in the third level to get the ratio. 

According to the inputs and fuzzy collections, the following 

rules are stated: 

𝑂3,𝑖 = 𝜔𝑖̅̅ ̅ =
𝜔𝑖

∑𝜔𝑖
=

𝜔𝑖

𝜔1+𝜔2
  

𝑅𝑢𝑙𝑒(1)  = 𝑖𝑓(𝑥)𝑖𝑠(𝐴1)𝑎𝑛𝑑(𝑦)𝑖𝑠(𝐵1)𝑡ℎ𝑒𝑛(𝑓1) =

𝑝1𝑥 + 𝑞1𝑦 + 𝑟1 

𝑅𝑢𝑙𝑒(2)  = 

𝑖𝑓(𝑥)𝑖𝑠(𝐴2)𝑎𝑛𝑑(𝑦)𝑖𝑠(𝐵2)𝑡ℎ𝑒𝑛(𝑓2) = 𝑝2𝑥 + 𝑞2𝑦 +

𝑟2 

(15) 

Based on this equation, 𝑂3,𝑖 shows the third level’s 

results, 𝑝1, 𝑞1, 𝑟1, 𝑝2, 𝑞2, 𝑟2 stand for consequent variables, 

𝐴1, 𝐴2, 𝐵1 and 𝐵2 show the fuzzy collections and the fuzzy 

rules presented by 𝑓1 and 𝑓2. Using Eq. (14) and fuzzy if-

then rules, the fourth level calculates every rule's result 

utilizing the weight assigned in the previous level. 

𝑂4,𝑖 = 𝜔𝑖̅̅ ̅. 𝑓𝑖, 𝑓 = 1,2  (16) 

According to Eq. (16), 𝑂4,𝑖 show the fourth level’s result 

and 𝑓𝑖 shows the if-then rules in Eq. (6). In the fifth level, 

the total of every result is calculated.  

𝑂5,𝑖 = 𝑓𝑜𝑢𝑡 = ∑ 𝜔𝑖̅̅ ̅. 𝑓𝑖
2
𝑖=1   (17) 

In this equation, 𝑂5,𝑖 stands for the general result. The 

expertise of experts may be used to define the variables of 

an 𝐴𝑁𝐹𝐼𝑆 model, like the premise and consequent 

variables. To determine its variables, a hybrid approach 

according to forward and backward passes may be utilized. 

The premise variables may be assessed using the backward 

pass's gradient descent approach, though the consequent 

variables can be calculated using the least squares 

technique in the forward pass. A hybrid approach, 

nevertheless, may not converge quickly enough or properly 

determine the premise and ensuing variable values. An 

𝐴𝑁𝐹𝐼𝑆 model's structure is shown in Fig. 2. In this task, the 

variables of membership functions of the produced 𝐴𝑁𝐹𝐼𝑆 

were trained (optimized) using the 𝑅𝑆𝐴 algorithm.
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Fig. 2. The structure of the 𝐴𝑁𝐹𝐼𝑆 

 
3.4. Indices 

Different correlation and error measures may be used 

to assess the effectiveness of the constructed models. To 

achieve the intended objective, many indices were taken 

into account, including the coefficient of determination 

(𝑅2), normalized root mean squared error (𝑁𝑅𝑀𝑆𝐸), 

relative absolute error (𝑅𝐴𝐸), root relative squared error 

(𝑅𝑅𝑆𝐸), mean absolute error (𝑀𝐴𝐸), and performance 

index (𝑃𝐼). The greater the correlation (𝑅2) and the lesser 

the error metrics (𝑁𝑅𝑀𝑆𝐸, 𝑅𝐴𝐸, 𝑅𝑅𝑆𝐸, and 𝑀𝐴𝐸), the more 

robust the models. 

𝑅2 = (
∑ (𝑚𝑑 − 𝑚̅)(𝑧𝑑 − 𝑧̅)𝐷

𝑑=1

√[∑ (𝑚𝑃 − 𝑚)2𝐷
𝑑=1 ][∑ (𝑧𝑑 − 𝑧̅)2𝐷

𝑑=1 ]
)

2

 (18) 

𝑅𝑀𝑆𝐸 = √
1

𝐷
∑(𝑧𝑑 − 𝑚𝑑)2

𝐷

𝑑=1

 (19) 

𝑁𝑅𝑀𝑆𝐸 = 𝑅𝑀𝑆𝐸/𝑧̅ (20) 

𝑅𝐴𝐸 =
∑ |𝑚𝑑 − 𝑧𝑑|𝐷

𝑑=1

∑ |𝑚𝑑 − 𝑚̅|𝐷
𝑑=1

 (21) 

𝑅𝑅𝑆𝐸 = √
∑ (𝑚𝑑 − 𝑧𝑑)2𝐷

𝑑=1

∑ (𝑚𝑑 − 𝑚̅)2𝐷
𝑑=1

 (22) 

𝑀𝐴𝐸 =
1

𝐷
∑|𝑧𝑑 − 𝑚𝑑|

𝐷

𝑑=1

 (23) 

𝑃𝐼 =
1

𝑚̅

𝑅𝑀𝑆𝐸

√𝑅2 + 1
 (24) 

where: 

𝑚𝑑 : The observations 

𝑚̅ : The average of observations 

𝑧𝑑 : The estimations from models 

𝑧̅ : The average of estimations from models 

𝐷 : Number of data 

 

4. Results and discussion 
To calculate 𝑆𝑚, the output of the suggested hybrid 

𝑆𝑉𝑅 and 𝐴𝑁𝐹𝐼𝑆 models—abbreviated as 𝑅𝑆𝑆𝑉𝑅 and 

𝑅𝑆𝐴𝑁𝐹—was assembled and explained below. The 

considered data was split randomly into the training and 

examining sections by 75 and 25%, respectively. Fig. 3 

presents the ratio of predicts to assessments for 𝑅𝑆𝑆𝑉𝑅 and 

𝑅𝑆𝐴𝑁𝐹 in a violin plot, along with the correlation between 

predicts and assessments 𝑆𝑚. Table 2 presents a 

comparison of various measures, such as 𝑅2, 𝑁𝑅𝑀𝑆𝐸, 𝑅𝐴𝐸, 

𝑅𝑅𝑆𝐸, 𝑀𝐴𝐸, and 𝑃𝐼, that were computed to attain the 

desired gain. In addition, it may be beneficial to compare 

the findings of a study with earlier presented articles to 

validate the predictions and improve their precision and 

thoroughness. The research attempted to establish a 

feasible comparison with the hybrid 𝐴𝑁𝐹𝐼𝑆 − 𝑃𝑆𝑂 [21] and 

𝑆𝐶𝐴 − 𝑅𝐵𝐹𝑁𝑁 [33] models. 

According to the study's results, it appears that the 

𝑅𝑆𝑆𝑉𝑅 and 𝑅𝑆𝐴𝑁𝐹 systems have demonstrated proficient 

abilities in estimation. The results indicate that the 𝑅𝑆𝐴𝑁𝐹 

and 𝑅𝑆𝑆𝑉𝑅 models have high 𝑅2 values, with the 𝑅𝑆𝐴𝑁𝐹 

achieving 0.9903 and 0.9814 for its training and testing 

components, respectively, and the 𝑅𝑆𝑆𝑉𝑅 achieving 0.9784 

and 0.9753 for its training and testing components. It is 

important to thoroughly analyze and evaluate the 

generated systems to determine the most optimal 

methodology. Throughout the training phase, it was noted 

that the 𝑅𝑆𝐴𝑁𝐹 simulation demonstrated reduced values 

for all error metrics, including 𝑁𝑅𝑀𝑆𝐸, 𝑅𝐴𝐸, 𝑀𝐴𝐸, 𝑃𝐼, and 

𝑅𝑅𝑆𝐸, when compared to the 𝑅𝑆𝑆𝑉𝑅 system. About the 

𝑅𝑆𝐴𝑁𝐹 framework, it was observed that the 𝑁𝑅𝑀𝑆𝐸 

statistics underwent a reduction from 0.2 to 0.1348 during 

the training section and from 0.2003 to 0.175 during the 

testing phase. Additional error measurements, namely 
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𝑅𝐴𝐸, 𝑅𝑅𝑆𝐸, and 𝑀𝐴𝐸, also demonstrate the superior 

achievement of the 𝑅𝑆𝐴𝑁𝐹 simulation in comparison to the 

𝑅𝑆𝑆𝑉𝑅 approach. With regards to the 𝑃𝐼 indicator, it was 

observed that a smaller number indicates better 

effectiveness. Specifically, during the training stage, the 

𝑅𝑆𝐴𝑁𝐹 simulation gained the smallest 𝑃𝐼 value of 0.0668, 

which was smaller than the 𝑃𝐼 of 0.0993 for 𝑅𝑆𝑆𝑉𝑅. 

Similarly, during the test stage, the 𝑅𝑆𝐴𝑁𝐹 simulation 

acquired a 𝑃𝐼 of 0.0904, which was fewer than the 𝑃𝐼 of 

0.1038 related to 𝑅𝑆𝑆𝑉𝑅. The presented arguments and 

clarifications indicate that the 𝐴𝑁𝐹𝐼𝑆 approach, when 

combined with 𝑅𝑆𝐴, can be classified as a superior model, 

despite the 𝑅𝑆𝑆𝑉𝑅's efficacy in the prediction process. 

A thorough evaluation establishes the dependability of 

the models derived from pertinent scholarly sources 

[21] [33]. Table 2 illustrates the comparative advantage of 

our proposed 𝑅𝑆𝐴𝑁𝐹 over the prior research works 

referenced in the scholarly literature. The indices that were 

deemed valid were utilized for comparison purposes, such 

as 𝑅2, 𝑀𝐴𝐸, and 𝑃𝐼. The 𝐴𝑁𝐹𝐼𝑆 − 𝑃𝑆𝑂 technique, as 

reported in reference [21], resulted in a significant increase 

in the 𝑅2 value for the 𝑅𝑆𝐴𝑁𝐹 model. Specifically, the 

𝑅2 value improved from 0.9025 to 0.9903 during the 

learning stage and from 0.739 to 0.9814 during the 

examining stage. Furthermore, the 𝑅𝑆𝐴𝑁𝐹 model that was 

formulated exhibits superior performance in comparison to 

𝑆𝐶𝐴 − 𝑅𝐵𝐹𝑁𝑁 [33]. This is evidenced by the increase in the 

𝑅2 values and the decrease in both the 𝑀𝐴𝐸 and 𝑃𝐼 values.

 

Table 2. The models’ performance 

Model 
Index 

𝑹𝟐 𝑵𝑹𝑴𝑺𝑬 𝑹𝑨𝑬 𝑹𝑹𝑺𝑬 𝑴𝑨𝑬 𝑷𝑰 

Train 

𝑹𝑺𝑺𝑽𝑹 (This study) 0.9784 0.2 0.1414 0.151 2.2963 0.0993 

𝑹𝑺𝑨𝑵𝑭 (This study) 0.9903 0.1348 0.0831 0.1018 1.3497 0.0668 

𝑨𝑵𝑭𝑰𝑺 − 𝑷𝑺𝑶 [21] 0.9025 − − − − − 
𝑺𝑪𝑨 − 𝑹𝑩𝑭𝑵𝑵 [33] 0.9565 − − − 3.8642 0.1407 

Test 

𝑹𝑺𝑺𝑽𝑹 (This study) 0.9753 0.2003 0.1132 0.1646 2.3246 0.1038 

𝑹𝑺𝑨𝑵𝑭 (This study) 0.9814 0.175 0.0745 0.1437 1.5304 0.0904 

𝑨𝑵𝑭𝑰𝑺 − 𝑷𝑺𝑶 [21] 0.739 − − − − − 

𝑺𝑪𝑨 − 𝑹𝑩𝑭𝑵𝑵 [33] 0.9422 − − − 5.1257 0.156 

 

  
(𝑎) (𝑏) 
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(𝑐) (𝑑) 

Fig. 3. The findings of the created analysis 

 

The study's effectiveness heavily relies on the quality 

and quantity of the dataset used. Future studies should 

focus on obtaining more extensive and higher-quality data 

to enhance the reliability and generalizability of the 

proposed algorithms. While the study emphasizes the 

ability to capture complex relationships, the 

interpretability of the models may be limited. Researchers 

could consider methods for explaining model predictions, 

especially in applications where interpretability is crucial. 

Future studies could provide a clear and detailed 

comparison with existing models, including various 

evaluation metrics. Future research could explore 

ensemble methods that combine multiple models (e.g., 

combining 𝑅𝑆𝐴, 𝑆𝑉𝑅, and 𝐴𝑁𝐹𝐼𝑆) to improve predictive 

accuracy and reduce model bias. Develop techniques to 

enhance the interpretability of the models, especially in 

applications where understanding the model's decision-

making process is crucial. Applying the proposed 

algorithms to real-world scenarios and industries where 

estimating 𝑆𝑚 is relevant, such as in environmental 

monitoring, materials science, or geophysics.  

 

5. Conclusions 
The current article presents the establishment of 

combined data intelligence algorithms aimed at providing 

more dependable and precise shallow foundations (𝑆𝑚) on 

cohesionless soils’ estimation outcomes. These models 

combine the reptile search algorithm (𝑅𝑆𝐴) with support 

vector regression (𝑆𝑉𝑅) analysis and adaptive neuro-fuzzy 

inference system (𝐴𝑁𝐹𝐼𝑆). Optimization techniques 

facilitated the identification of the optimal primary variable 

value for both the 𝑆𝑉𝑅 model and the 𝐴𝑁𝐹𝐼𝑆. 

• According to the study's results, it appears that 

the 𝑅𝑆𝑆𝑉𝑅 and 𝑅𝑆𝐴𝑁𝐹 systems have 

demonstrated proficient abilities in estimation. 

The results indicate that the 𝑅𝑆𝐴𝑁𝐹 and 𝑅𝑆𝑆𝑉𝑅 

models have high 𝑅2 values, with the 𝑅𝑆𝐴𝑁𝐹 

achieving 0.9903 and 0.9814 for its training 

and testing components, respectively, and the 

𝑅𝑆𝑆𝑉𝑅 achieving 0.9784 and 0.9753 for its 

training and testing components.  

• Throughout the training phase, it was noted 

that the 𝑅𝑆𝐴𝑁𝐹 simulation demonstrated 

reduced values for all error metrics, including 

𝑁𝑅𝑀𝑆𝐸, 𝑅𝐴𝐸, 𝑀𝐴𝐸, 𝑃𝐼, and 𝑅𝑅𝑆𝐸, when 

compared to the 𝑅𝑆𝑆𝑉𝑅 system. During the 

training stage, the 𝑅𝑆𝐴𝑁𝐹 simulation gained the 

smallest 𝑃𝐼 value of 0.0668, which was smaller 

than the 𝑃𝐼 of 0.0993 for 𝑅𝑆𝑆𝑉𝑅. Similarly, 

during the test stage, the 𝑅𝑆𝐴𝑁𝐹 simulation 

acquired a 𝑃𝐼 of 0.0904, which was fewer than 

the 𝑃𝐼 of 0.1038 related to 𝑅𝑆𝑆𝑉𝑅.  

• The 𝐴𝑁𝐹𝐼𝑆 − 𝑃𝑆𝑂 technique, as reported in 

reference [21], resulted in a significant increase 

in the 𝑅2 value for the 𝑅𝑆𝐴𝑁𝐹 model. 

Specifically, the 𝑅2 value improved from 0.9025 

to 0.9903 during the learning stage and from 

0.739 to 0.9814 during the examining stage. 

Furthermore, the 𝑅𝑆𝐴𝑁𝐹 model that was 

formulated exhibits superior performance in 

comparison to 𝑆𝐶𝐴 − 𝑅𝐵𝐹𝑁𝑁 [33]. This is 

evidenced by the increase in the 𝑅2 values and 

the decrease in both the 𝑀𝐴𝐸 and 𝑃𝐼 values. 

• The study's application in practical efforts can 

be significant in the field of civil engineering 

and construction. For example, improving 

foundation design, cost savings, safer 

structures, environmental impact, risk 

mitigation. In summary, the practical 

applications of the research lie in its potential to 

enhance the efficiency, safety, and cost-

effectiveness of construction projects on 
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cohesionless soils. These applications can 

benefit engineers, construction companies, 

regulators, and the broader construction 

industry by improving the predictability and 

management of settlement-related challenges. 
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