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Highlights 

➢ Introduces a novel technique for precise maximum dry density (MDD) forecasting in soil stabilization blends. 
➢ Utilizes Naive Bayes, Artificial Rabbits Optimization, and Gradient-based Optimizer for robust models. 
➢ NBAR model demonstrates exceptional performance with high R2 (0.9903) and low RMSE (34.563). 
➢ A promising method for reliable MDD prediction with implications for robust infrastructure in the construction industry. 

 

Article Info   Abstract 

This article introduces a novel technique to accurately forecast the maximum dry density of soil 
stabilization blends. The Naive Bayes algorithm is employed to develop detailed and accurate 
models that use various natural soil characteristics, such as particle size distribution, plasticity, 
linear shrinkage, and stabilizing additives' type and amount, to relate to the MDD of stabilized soil. 
To ensure the model's accuracy, the study integrates two meta-heuristic algorithms: Artificial 
Rabbits Optimization and Gradient-based Optimizer. The models undergo validation using MDD 
samples of various soil types acquired from previously published stabilization test results. The 
results reveal three distinct models: NBAR, NBGB, and an individual NB model. Among these, the 
NBAR model stands out with exceptional performance, boasting a high R2 value of 0.9903 and a 
remarkably low RMSE value of 34.563. These results demonstrate the precision and reliability of 
the NBAR model and signify its effectiveness in predicting soil stabilization outcomes. Overall, this 
approach offers a promising way to accurately predict the MDD of soil stabilization mixtures in 
various engineering applications. Integrating meta-heuristic algorithms into the analysis increases 
the accuracy of the models and provides more reliable predictions, which has significant 
implications for the construction industry, where soil stabilization is critical for building robust and 
long-lasting infrastructure. 
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Nomenclature 

AI Artificial intelligence ML Machine Learning 
ARO Artificial Rabbits Optimization NB Naive Bayes 
GBO Gradient-based Optimizer PI performance index 
LL Liquid Limit PI Plasticity Index 
MAE Mean Absolute Error PL Plastic Limit 
MAPE mean absolute percentage error RMSE Root Mean Square Error 
MDD Maximum Dry Density 𝑅2 coefficient of determination 

   

1. Introduction 
Chemical stabilization is a crucial process in that 

chemicals involve the addition of lime, asphalt, cement, or 

their combinations to react with the natural constituents of 
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soil, resulting in enhanced strength, changes in porosity, 

volume, permeability, density, waterproofing, and reduced 

surface abrasion. Among these, the Maximum Dry Density 

(MDD) of stabilized soils is particularly important in 
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assessing soil suitability for stabilization. MDD represents 

the quality of stabilized soil after compaction and before 

curing and serves as a performance criterion for 

stabilization effectiveness [1]. By establishing such models, 

one can select a chemical stabilizer appropriately and 

capture the complex relationships between the properties 

and influential parameters. While some research studies 

have investigated changes in material properties before or 

after stabilization, there have been limited attempts to use 

these soil properties to predict MDD accurately. To advance 

the field of chemical stabilization, further research should 

focus on developing robust predictive models that can aid 

in optimizing stabilizer selection and enhancing 

construction practices for various civil engineering projects 

[2]–[4]. 

However, whether in their original state or enhanced 

through techniques like compaction, reinforcement, and 

consolidation, soil and rock remain indispensable 

components in the construction field [5]–[7]. Mechanical 

soil compaction is a widely employed technique to enhance 

soil engineering properties. Its effectiveness is commonly 

evaluated by comparing the achieved dry density with the 

MDD. In construction projects like earth dams, road and 

railway embankments, landfill liners, and backfilling of 

retaining structures, comprehending the soil compaction 

characteristics, particularly MDD, is of utmost importance. 

MDD plays a critical role as a performance indicator for 

stabilization and offers valuable insights into the soil 

quality post-compaction but before any treatment. 

Understanding the MDD helps ensure the stability and 

durability of these structures, making it an essential factor 

in the construction process [8]–[11]. Creating a 

mathematical model for estimating MDD values is 

recommended to reduce the requirement for extensive 

laboratory testing of MDD for each new construction 

project and to gain insights into the intricate connections 

between soil properties and influencing factors. This model 

should consider various soil characteristics before 

stabilization, such as texture, ductility, linear shrinkage, 

and the type and quantity of stabilizing additives. 

Nevertheless, these tests are time-consuming, costly, and 

heavily reliant on the expertise and experience of operators 

in both sample collection and result verification [12].  

Machine learning (ML) is a potent tool that empowers 

machines to process data and derive valuable insights, 

mainly when manual analysis is challenging. The growing 

availability of vast datasets has spurred the demand for ML 

applications across diverse industries. The primary 

objective of ML is to create algorithms capable of learning 

from data without explicit programming, leading to 

significant advancements in the field. Mathematicians and 

programmers employ various methods to tackle this 

challenge and develop ML algorithms that handle large and 

intricate datasets [13]–[15]. ML proves especially adept at 

identifying patterns and making precise predictions. 

Numerous methodologies have been developed and well-

documented, including supervised and unsupervised 

learning, reinforcement learning, and deep learning. Its 

widespread adoption in civil engineering, finance, 

manufacturing, transportation, and other industries has 

demonstrated remarkable success in enhancing 

performance and efficiency [16]–[18]. Through the 

utilization of data, the ML model accurately predicts the 

MDD of soil. One of the model's most significant 

advantages is its ability to handle non-linear relationships 

between input and output variables. 

Additionally, the model only requires optimization of 

a few parameters, effectively mitigating the risk of 

overfitting. As a result, the model proves to be a reliable and 

efficient tool for predicting MDD in civil engineering 

projects. Its extensive use in research and practical 

applications attests to its credibility and effectiveness [19]–

[26]. 

The current study introduces a novel machine learning 

method to accurately predict crucial soil properties, 

specifically focusing on MDD outputs, which play a vital 

role in civil engineering projects. The study adopts the 

Naive Bayes (NB) algorithm to overcome the challenges of 

obtaining experimental data. The key to achieving optimal 

NB model performance lies in parameter optimization, for 

which integrating two algorithms, Artificial Rabbits 

Optimization (ARO) and Gradient-based Optimizer (GBO), 

proves highly effective. This combination significantly 

enhances the accuracy and efficiency of the NB model, 

showcasing its positive impact on the infrastructure sector 

by optimizing MDD structure design and construction 

processes. Evaluating the proposed framework with a 

comprehensive MDD dataset and conducting comparative 

analyses demonstrate its effectiveness. The study's findings 

provide valuable insights into efficiently predicting MDD in 

civil engineering projects, presenting a promising method 

by incorporating the NB algorithm within the ML approach. 

This research offers practical solutions and valuable 

knowledge for tackling MDD prediction critical aspects of 

soil behavior in civil engineering projects. 

 

2. Materials and Methodology 
2.1.  Data gathering 

A more advanced approach has been developed to 

estimate soil's Maximum Dry Density (MDD), which 

involves six variables. The six variables used for this 

estimation are the percentages of cement and lime, as well 
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as the Atterberg Limits test results, which include the 

Liquid Limit (LL), Plasticity Index (PI), and Plastic Limit 

(PL). The MDD prediction is based on an NB model, and 

soil samples are obtained from different sources and 

analyzed in the laboratory [7]. Table 1 provides information 

about the sample origin, quantity, and variable range. LL 

indicates the moisture content at which the soil transitions 

from a plastic to a liquid state, PL represents the moisture 

content at which the soil transitions from a plastic to a 

semi-solid state, and PI measures the soil's plasticity, which 

is the difference between LL and PL. By considering the 

properties of the soil and the percentages of cement, lime, 

LL, PL, and PI obtained from collected data, custom 

equations, and correlations are employed to forecast the 

MDD of the soil. These equations and correlations are 

specifically designed to deliver accurate predictions of 

MDD based on the available information. In addition, the 

relation and correlations between input and output 

parameters are illustrated in Figure 1 and Table 2, 

respectively. According to Figure 1 and Table 2, if the PL, 

Lime, and cement possess a lower ratio, it will result in 

higher MDD values. A higher Soil, LL, and PI amounts can 

increase the values of MDD. In summary, the input 

parameters of Soil, Cement, LL, PL, PI, and Lime can all 

impact the elastic modulus of RAC. The desired properties 

and performance of the MDD will be achievable by 

optimizing these parameters.  

Table 1. Statistical properties of inputs and MDD. 

Indicators 

Variables 

Input Targets 

Soil (%) Cement (%) Lime (%) LL (%) PL (%) PI (%) MDD (𝒌𝑵/𝒎3) 

Max 100 30 30 102 58.24 70 2210 

Min 70 0 0 18 12 0 1200 

Avg 93.604 3.807 2.588 39.428 22.673 16.755 1780.61 

St. Dev. 4.6366 4.316 4.086 16.763 9.412 12.694 227.508 
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Fig. 1. The scatter plot for the relation between input and output. 

Table. 2. The correlation for input and output.

  Soil (%) Cement (%) Lime (%) LL (%) PL (%) PI (%) MDD 

Soil 1       

Cement  -0.58545 1      

Lime -0.51634 -0.39199 1     

LL 0.036907 -0.16005 0.127181 1    

PL -0.24418 0.025072 0.250608 0.660584 1   

PI 0.229777 -0.22993 -0.01786 0.830769 0.130912 1  

MDD  
0.11241 0.119095 -0.25336 -0.66095 -0.57443 -0.4469 1 

 

2.2. Naive Bayes (NB) 

The 𝑁𝐵 classifier is a probabilistic classifier that 

utilizes Bayes' theorem while assuming strong 

independence between features. Its primary advantage is 

its simplicity in design, as it does not necessitate complex 

iterative parameter estimation methods. Furthermore, the 

𝑁𝐵 classifier is not easily affected by noise or irrelevant 

attributes, as stated by Das et al. [27]. The 𝑁𝐵 classifier is 

based on the following equation: 

𝑦 = arg max
𝑦𝑖={𝑙𝑎𝑛𝑑𝑠𝑙𝑖𝑑𝑒,𝑛𝑜𝑛−𝑙𝑎𝑛𝑑𝑠𝑙𝑖𝑑𝑒}

𝑃(𝑦𝑖)∐𝑃(
𝑥𝑖
𝑦𝑖
)

14

𝑖=1

 
(1) 

where 𝑃(𝑦𝑖) is the prior probability of 𝑦𝑖, 𝑃(
𝑥𝑖

𝑦𝑖
) is the 

posterior probability, and it can be calculated by: 

𝑃 (
𝑥𝑖
𝑦𝑖
) =

1

√2𝜋𝜎
𝑒
−(𝑥𝑖−𝜇)

2

2𝜎2  (2) 

Where 𝜇 is the mean, and 𝜎 is the standard deviation 

of 𝑥𝑖. 
2.3. Artificial Rabbits Optimization (ARO) 

The ARO algorithm drew inspiration from the survival 

tactics adopted by rabbits in their natural habitat. The 

detour foraging strategy, where rabbits venture away from 

their nests to seek food, was the basis for this approach [28]. 

To evade predators and hunters, rabbits construct burrows 

near their nests. They tend to search for food if they possess 

high energy levels or ample. Rabbits tend to forage for food 

at distant locations from their nests when they possess high 

or sufficient energy levels (detour foraging). Conversely, 

when their energy levels are low, they randomly take shelter 

in nearby burrows around their nests. Figure 2 illustrates 

the process of ARO [29].
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Fig. 2. The process of ARO 

 
2.3.1 Energy Shrink (Switch between 

Exploration and Exploitation) 

Rabbits can either engage in random hiding or detour 

foraging, contingent on their energy levels. To simulate the 

rabbit's decision, an energy factor A(t) is computed using 

Eq. (3). If 𝐴(𝑡) exceeds 1, the rabbit will opt for detour 

foraging, whereas if A(t) is less than or equal to 1, it will 

choose random hiding. 

𝐴(𝑡) = 4 (1 −
𝑡

𝑇
) 𝑙𝑛

1

𝑟
 (3) 

Here, 𝑟 is a randomly selected number between 0 and 

1. 
2.3.2 Detour Foraging (Exploration) 

As per Eq. (4), rabbits randomly search for food based 

on the positions of their peers while foraging for food at a 

distance from their nests to protect them from potential 

predators. 

𝑆𝑖⃗⃗⃗  (𝑡 + 1) = 𝑥𝑗⃗⃗⃗  (𝑡) + 𝑈 × (𝑥𝑖⃗⃗⃗  (𝑡) − 𝑥𝑗⃗⃗⃗  (𝑡))

+ 𝑟𝑜𝑢𝑛𝑑(0.5 × (0.05)

+ 𝑟1)) × 𝑛1, 𝑖, 𝑗 = 1,… , 𝑛 𝑎𝑛𝑑 𝑗 ≠ 𝑖 
(4) 

𝑈 = 𝑂 × 𝐶 (5) 

𝑂 = (𝑒 − 𝑒
(
𝑡−1
𝑇
)
× sin (2𝜋𝑟2) (6) 

𝐶(𝑘) = {
1  𝑖𝑓 𝑘 = 𝑔(𝑂)

0   𝑒𝑙𝑠𝑒
    𝑘 = 1,… , 𝑑  𝑎𝑛𝑑  𝑙

= 1,… , [𝑟3, 𝑑] 
(7) 

𝑔 = 𝑟𝑎𝑛𝑑𝑝𝑒𝑟𝑚(𝑑) (8) 

𝑛1~𝑁(0,1) (9) 

The equation involves several parameters. At time 𝑡, 

𝑥𝑖⃗⃗⃗  (𝑡) denotes the position of the ith rabbit, while 𝑆𝑖⃗⃗⃗  (𝑡 + 1) 

represents the candidate's position at time 𝑡 + 1. The 

maximum number of iterations is 𝑇, and the movement 

pace of rabbits is represented by 𝐿. The rabbit population 

size is denoted by 𝑛, and 𝑑 represents the number of 

variables in the optimization problem. Additionally, 𝑟1, 𝑟2, 

and 𝑟3 are three random numbers between (0,1) and 𝑛1 

follows the standard normal distribution. The mapping 

vector is 𝐶, and the running operator that simulates the 

rabbits' running characteristics is denoted by 𝑈. 
2.3.3 Random Hiding (Exploitation) 

Eq. (10) generates a set of d burrows around the nest 

of each rabbit. The rabbit randomly selects these burrows 

to take shelter and evade potential predators. 

𝑏𝑖,𝑗⃗⃗ ⃗⃗  ⃗(𝑡) = 𝑥𝑖⃗⃗⃗  (𝑡) + 𝐻 × 𝑔 × 𝑥𝑖⃗⃗⃗  (𝑡), 𝑖 = 1,… , 𝑛 𝑎𝑛𝑑 𝑗

= 1,… , 𝑑 (10) 

𝐻 =
𝑇 − 𝑡 + 1

𝑇
× 𝑟4 (11) 

𝑔(𝑘) = {
1 𝑖𝑓 𝑘 = 𝑗
0 𝑒𝑙𝑠𝑒

    𝑘 = 1,… , 𝑑  (12) 

𝑆𝑖⃗⃗⃗  (𝑡 + 1) = 𝑥𝑗⃗⃗⃗  (𝑡) + 𝑈 × (𝑟4 × 𝑏𝑖,𝑟⃗⃗ ⃗⃗  ⃗(𝑡) − 𝑥𝑖⃗⃗⃗  (𝑡)) 𝑖

= 1,… , 𝑛 
(13) 

𝑔𝑟(𝑘) = {
1 𝑖𝑓 𝑘 = |𝑟5 × 𝑑|

0 𝑒𝑙𝑠𝑒
    𝑘 = 1,… , 𝑑  (14) 

𝑏𝑖,𝑟⃗⃗ ⃗⃗  ⃗(𝑡) = 𝑥𝑖⃗⃗⃗  (𝑡) + 𝐻 × 𝑔𝑟 × 𝑥𝑖⃗⃗⃗  (𝑡), 𝑖 = 1,… , 𝑛 (15) 

𝑥𝑖⃗⃗⃗  (𝑡 + 1) = {
𝑥𝑖⃗⃗⃗  (𝑡)𝑓(𝑥𝑖⃗⃗⃗  (𝑡)) ≤ 𝑓(𝑠𝑖⃗⃗ (𝑡 + 1))

𝑠𝑖⃗⃗ (𝑡 + 1)𝑓(𝑥𝑖⃗⃗⃗  (𝑡)) > 𝑓(𝑠𝑖⃗⃗ (𝑡 + 1))
    𝑘

= 1,… , 𝑑  
(16) 

Eq. (15) highlights 𝑏𝑖,𝑟⃗⃗ ⃗⃗  ⃗(𝑡) as the randomly chosen 

burrow for the ith rabbit to take shelter in, where 𝐻 

represents the hiding parameter, 𝑏𝑖,𝑗⃗⃗ ⃗⃗  ⃗ denotes the jth burrow 

for the ith rabbit, and 𝑟4, and 𝑟5 are random numbers 

between (0,1). 
2.4. Gradient-based optimizer (GBO) 

The 𝐺𝐵𝑂 is a technique that combines population-

based methods with a gradient technique to address 

complex optimization problems. The 𝐺𝐵𝑂 algorithm 

leverages 𝑁𝑒𝑤𝑡𝑜𝑛′𝑠 method to guide the search agents' 

direction as they navigate through the problem space. Its 
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fundamental components include the gradient search rule 

and the locale escaping operator [30]. 
2.4.1 Initialization stage 

The 𝐺𝐵𝑂, similar to many other metaheuristic 

algorithms, commences the optimization procedure by 

generating an initial population from a uniform random 

distribution. Each agent in the population is referred to as 

a "𝑣𝑒𝑐𝑡𝑜𝑟", and the population consists of 𝑁 agents 

represented as vectors in a search space with 𝐷 −

𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠. The initialization process is executed in the 

following manner: 

𝑋𝑛 = 𝑋𝑚𝑖𝑛 + 𝑟𝑎𝑛𝑑(0,1) × (𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛) (17) 

where 𝑋𝑚𝑖𝑛, and 𝑋𝑚𝑎𝑥  are represent the limits of 

decision variables 𝑋, and 𝑟𝑎𝑛𝑑(0,1) is a random number 

defined in the range [0, 1]. 
2.4.2 Gradient search rule stage 

The 𝐺𝐵𝑂 algorithm, which was previously discussed, 

starts by generating a 𝑟𝑎𝑛𝑑𝑜𝑚 set of initial solutions. 

Subsequently, the position of each agent gets updated 

according to a designated gradient direction. To ensure a 

balance between exploring essential regions of the search 

space and exploiting them to reach optimal and global 

points, a significant factor 𝜌1 is utilized in the following 

manner: 

𝜌1 = 2 × 𝑟𝑎𝑛𝑑 × 𝛼 − 𝛼 
(18) 

𝛼 = |𝛽 × 𝑠𝑖𝑛 (
3𝜋

2
+ 𝑠𝑖𝑛 (𝛽 ×

3𝜋

2
))| (19) 

𝛽 = 𝛽𝑚𝑖𝑛 + (𝛽𝑚𝑎𝑥 − 𝛽𝑚𝑖𝑛) × (1 − (
𝑚

𝑀
)
3

)
2

 (20) 

where 𝛽𝑚𝑖𝑛  and 𝛽𝑚𝑎𝑥  are values of constant 0.2 and 1.2, 

respectively, 𝑚 indicates the present iteration number, 

while 𝑀 represents the total number of iterations. To 

achieve a balance between exploration and exploitation, the 

parameter 𝜌1 based on changes in the sine function 𝛼. The 

parameter value varies during the iterations. Initially, it is 

set to a significant value during the early optimization 

iterations to enhance population diversity. As the iterations 

progress, the value gradually decreases, speeding up the 

convergence of the population. Within a specified range 

[550, 750], the parameter value increases during specific 

iterations, promoting solution diversity and leading the 

algorithm to converge around the best solution found and 

explore additional solutions. Consequently, this approach 

helps the algorithm avoid getting stuck in local sub-regions. 

In summary, GSR can be defined as follows: 

𝐺𝑆𝑅 = 𝑟𝑎𝑛𝑑𝑛 × 𝜌1 ×
2∆𝑥 × 𝑥𝑛

(𝑥𝑤𝑜𝑟𝑠𝑡 − 𝑥𝑏𝑒𝑠𝑡 + 𝜀)
 

(21) 

The 𝐺𝐵𝑂 algorithm benefits from the concept of 

𝐺𝑆𝑅 as it enables random behavior in each iteration, which 

enhances exploration behavior and prevents getting stuck 

in local optima. The formula in Eq.  (21) includes a factor 

called ∆𝑥, which calculates the difference between the best 

solution (𝑥𝑏𝑒𝑠𝑡) and a solution selected randomly 𝑥𝑟1
𝑚 . To 

ensure that ∆𝑥 varies across iterations, the value of 𝛿 is 

determined using Eq. (24). Moreover, to further promote 

exploration, some random (𝑟𝑎𝑛𝑑𝑛) is incorporated into this 

equation. 

∆𝑥 = 𝑟𝑎𝑛𝑑(1:𝑁) × |𝑠𝑡𝑒𝑝| (22) 

𝑠𝑡𝑒𝑝 =
(𝑥𝑏𝑒𝑠𝑡 − 𝑥𝑟1

𝑚) + 𝛿

2
 (23) 

𝛿 = 2 × 𝑟𝑎𝑛𝑑 × (|
𝑥𝑟1
𝑚 + 𝑥𝑟2

𝑚 + 𝑥𝑟3
𝑚 + 𝑥𝑟4

𝑚

4
− 𝑥𝑛

𝑚|) (24) 

The vector 𝑟𝑎𝑛𝑑(1:𝑁) contains 𝑁 random values that 

fall within the range of [0, 1]. Four different integers, 

𝑟1, 𝑟2, 𝑟3, 𝑎𝑛𝑑 𝑟4, are randomly selected from the range of 

[1, 𝑁], with the condition that (𝑟1  ≠  𝑟2  ≠  𝑟3  ≠ 𝑟4  ≠  𝑛). 

The step size, which is determined by 𝑥𝑏𝑒𝑠𝑡and 𝑥𝑟1
𝑚 , is 

denoted as "𝑠𝑡𝑒𝑝". The movement direction (𝐷𝑀) is used to 

approach the solution area around 𝑥𝑛. To achieve this, the 

current vector (𝑥𝑛) is moved in the direction of (𝑥𝑏𝑒𝑠𝑡 − 𝑥𝑛) 

using the best vector. This process significantly affects 

the 𝐺𝐵𝑂 convergence by providing a useful local search 

tendency. The formula for computing the 𝐷𝑀 is as follows: 

𝐷𝑀 = 𝑟𝑎𝑛𝑑 × 𝜌2 × (𝑥𝑏𝑒𝑠𝑡 − 𝑥𝑛) (25) 

The value of 𝑟𝑎𝑛𝑑 is generated uniformly within the 

range [0, 1], and 𝜌2 is a random parameter used to adjust 

the step size of each vector agent during the 𝐺𝐵𝑂 

exploration process 𝜌2 is composed of important 

parameters and is calculated according to the following 

formula: 

𝜌2 = 2 × 𝑟𝑎𝑛𝑑 × 𝛼 − 𝛼. (26) 

The current vector position (𝑥𝑛
𝑚) is updated using Eqs. 

(27) and (28), which depend on the terms 𝐺𝑆𝑅 and 𝐷𝑀. 

𝑋1𝑛
𝑚 = 𝑥𝑛

𝑚 − 𝐺𝑆𝑅 + 𝐷𝑀 (27) 

The new vector, 𝑋1𝑛
𝑚, is obtained by updating 𝑥𝑛

𝑚. This 

can be expressed as a reformulation of Eqs. (20) and (25): 

𝑋1𝑛
𝑚 = 𝑥𝑛

𝑚 − 𝑟𝑎𝑛𝑑𝑛 × 𝜌1 ×
2∆𝑥 × 𝑥𝑛

𝑚

(𝑦𝑝𝑛
𝑚 − 𝑦𝑞𝑛

𝑚 + 𝜀)

+ 𝑟𝑎𝑛𝑑𝑛 × 𝜌2 × (𝑥𝑏𝑒𝑠𝑡 − 𝑥𝑛
𝑚) 

(28) 

The values of 𝑦𝑝𝑛
𝑚and 𝑦𝑞𝑛

𝑚correspond to 𝑦𝑛 + ∆𝑥  and 

𝑦𝑛 − ∆𝑥, respectively. The vector 𝑦𝑛 is the average of the 

current solution vector, 𝑥𝑛, and the vector 𝓏𝑛+1, and is 

calculated as follows: 

𝓏𝑛+1 = 𝑥𝑛 − 𝑟𝑎𝑛𝑑𝑛 ×
2∆𝑥 × 𝑥𝑛

(𝑥𝑤𝑜𝑟𝑠𝑡 − 𝑥𝑏𝑒𝑠𝑡 + 𝜀)
 

(29) 

The current solution vector is represented by 𝑥𝑛, while 

𝑟𝑎𝑛𝑑𝑛 is a randomly generated solution vector of size 𝑛. 

𝑥𝑤𝑜𝑟𝑠𝑡 and 𝑥𝑏𝑒𝑠𝑡  correspond to the 𝑤𝑜𝑟𝑠𝑡 and 𝑏𝑒𝑠𝑡 solutions, 
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respectively, and ∆𝑥 is determined by Eq. (22). By 

substituting the current solution vector, 𝑥𝑛
𝑚, for the best 

solution vector, 𝑥𝑏𝑒𝑠𝑡  in the formula mentioned above, 

obtain 𝑋2𝑛
𝑚, which is expressed as follows: 

𝑋2𝑛
𝑚 = 𝑥𝑏𝑒𝑠𝑡 − 𝑟𝑎𝑛𝑑𝑛 × 𝜌1 ×

2∆𝑥 × 𝑥𝑛
𝑚

(𝑦𝑝𝑛
𝑚 − 𝑦𝑞𝑛

𝑚 + 𝜀)

+ 𝑟𝑎𝑛𝑑𝑛 × 𝜌2 × (𝑥𝑟1
𝑚 − 𝑥𝑟2

𝑚) 
(30) 

The objective of the 𝐺𝐵𝑂 algorithm is to 𝑖𝑚𝑝𝑟𝑜𝑣𝑒 𝑏𝑜𝑡ℎ 

the exploration and exploitation phases by utilizing Eq. 

(28) to enhance global search during the exploration phase, 

and Eq. (30) to boost local search capability during the 

exploitation phase. As a result, the next iteration's updated 

solution is created in the following manner: 

𝑥𝑛
𝑚+1 = 𝑟𝑎 × (𝑟𝑏 × 𝑋1𝑛

𝑚 + (1 − 𝑟𝑏) × 𝑋2𝑛
𝑚) + (1

− 𝑟𝑎) × 𝑋3𝑛
𝑚 

(31) 

where 𝑟𝑎, and 𝑟𝑏are random numbers determined in 

the range [0, 1], and 𝑋3𝑛
𝑚 is defined as: 

𝑋3𝑛
𝑚 = 𝑋𝑛

𝑚+1 − 𝜌1 × (𝑋2𝑛
𝑚 − 𝑋1𝑛

𝑚) (32) 

2.4.3 Local escaping operator stage 

To enhance the efficacy of an optimization algorithm in 

addressing intricate problems, the Local Escaping Operator 

(𝐿𝐸𝑂) is introduced. By updating the solution's position, 

the 𝐿𝐸𝑂 is adept at helping the algorithm escape local 

optima points and accelerate convergence. The 𝐿𝐸𝑂 

employs targets to create a new solution, 𝑋𝐿𝐸𝑂
𝑚 , which 

outperforms several other solutions, including the best 

solution, 𝑥𝑏𝑒𝑠𝑡, as well as solutions 𝑋1𝑛
𝑚 and 𝑋1𝑛

𝑚 selected 

randomly from the population, as well as solutions 𝑋𝑟1
𝑚 and 

𝑋1𝑟2
𝑚  created randomly. The 𝐿𝐸𝑂 efficiently updates the 

current solutions, and this operation follows a specific 

scheme. 

𝐼𝑓 𝑟𝑎𝑛𝑑 <  𝑝𝑟𝑋𝐿𝐸𝑂
𝑚

=

{
 
 
 

 
 
 
𝑋𝑛
𝑚+1 + 𝑓

1
(𝑢1𝑥𝑏𝑒𝑠𝑡 − 𝑢2𝑥𝑘

𝑚) + 𝑓
2
𝜌1(𝑢3(𝑋2𝑛

𝑚 − 𝑋1𝑛
𝑚))

+
𝑢2(𝑋2𝑟1

𝑚 − 𝑋1𝑟2
𝑚 )

2
,           𝑖𝑓 𝑟𝑎𝑛𝑑 < 0.5

𝑋𝑛
𝑚+1 + 𝑓

1
(𝑢1𝑥𝑏𝑒𝑠𝑡 − 𝑢2𝑥𝑘

𝑚) + 𝑓
2
𝜌1(𝑢3(𝑋2𝑛

𝑚 − 𝑋1𝑛
𝑚))

+
𝑢2(𝑋2𝑟1

𝑚 − 𝑋1𝑟2
𝑚 )

2
,         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝐸𝑛𝑑 

 
(33) 

 

Where 𝑝𝑟 is a chance value, 𝑝𝑟 =  0.5, the values 𝑓1, 

and 𝑓2 are random numbers following a uniform 

distribution ∈  [−1, 1], and 𝑢1, 𝑢2, 𝑢3 are random values 

generated as follows: 

𝑢1 = {
2 × 𝑟𝑎𝑛𝑑     𝑖𝑓𝜇1 < 0.5
1                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
(34) 

𝑢2 = {
𝑟𝑎𝑛𝑑     𝑖𝑓𝜇1 < 0.5
1              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (35) 

𝑢3 = {
𝑟𝑎𝑛𝑑     𝑖𝑓𝜇1 < 0.5
1              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (36) 

Where 𝑟𝑎𝑛𝑑 denotes a random value ∈  [0, 1], and 𝜇1 is 

a number within the specified range [0, 1]. The previous 

equations for 𝑢1, 𝑢2, 𝑢3, can be explained as follows: 

𝑢1 = 𝐿1 × 2 × 𝑟𝑎𝑛𝑑 + (1 − 𝐿1) (37) 

𝑢2 = 𝐿1 × 𝑟𝑎𝑛𝑑 + (1 − 𝐿1) (38) 

𝑢3 = 𝐿1 × 𝑟𝑎𝑛𝑑 + (1 − 𝐿1) (39) 

The binary parameter 𝐿1 can take on values of either 

0 𝑜𝑟 1. If the parameter 𝜇1 is less than 0.5, then 𝐿1 is 

assigned a value of 1;  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 𝐿1 is assigned a value of 0. 

The solution 𝑥𝑘
𝑚 is created using the following method: 

𝑥𝑘
𝑚 = {

𝑥𝑟𝑎𝑛𝑑     𝑖𝑓𝜇2 < 0.5

𝑥𝑝
𝑚        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (40) 

The solution generated by 𝑥𝑟𝑎𝑛𝑑  is a result of a formula 

that produces random outputs. 

𝑥𝑟𝑎𝑛𝑑 = 𝑋𝑚𝑖𝑛 + 𝑟𝑎𝑛𝑑(0,1) × (𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛) (41) 

A solution called 𝑥𝑝
𝑚 is chosen at random from a given 

population, and a random number between 0 𝑎𝑛𝑑 1, 

denoted by 𝜇2, is also selected. 

Algorithm 1 describes the details 𝑝𝑠𝑒𝑢𝑑𝑜 − 𝑐𝑜𝑑𝑒 of 

𝐺𝐵𝑂 algorithm. 

Algorithm 1 The Gradient-Based Optimizer's Pseudo Code. 

𝑆𝑡𝑒𝑝 1. 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 

Provide values to parameters 𝑝𝑟, 𝜀,𝑀  

Formulate an initial population 𝑋0 = [𝑥0,1, 𝑥0,2, … , 𝑥0,𝐷 

Evaluate the objective function value 𝑓(𝑋0) =, 𝑛 =

1,… , 𝑁  

Determine the best and worst outcomes 𝑥𝑏𝑒𝑠𝑡
𝑚  and 𝑥𝑤𝑜𝑟𝑠𝑡

𝑚  

𝑆𝑡𝑒𝑝 2. 𝑃𝑟𝑖𝑚𝑎𝑟𝑦 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 

𝒘𝒉𝒊𝒍𝒆 𝑚 <  𝑀 𝒅𝒐  

       𝒇𝒐𝒓 𝑛 =  1 𝑡𝑜 𝑁 𝒅𝒐 

              𝒇𝒐𝒓 𝑛 =  1 𝑡𝑜 𝐷 𝒅𝒐  

                     𝑆𝑒𝑙𝑒𝑐𝑡 𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦 𝑟1 ≠  𝑟2 ≠  𝑟3 ≠  𝑟4 ≠  𝑛 

𝑖𝑛 𝑡ℎ𝑒 𝑟𝑎𝑛𝑔𝑒 𝑜𝑓 [1, 𝑁]  
                     Determine the position 𝑥𝑛,𝑖

𝑚+1using 𝐸𝑞. (31)  

              𝒆𝒏𝒅 𝒇𝒐𝒓  

              𝒊𝒇 𝑟𝑎𝑛𝑑 <  𝑝𝑟  𝒕𝒉𝒆𝒏  

                      Determine the position 𝑥𝐿𝐸𝑂
𝑚  using 𝐸𝑞. (33)  

                       𝑥𝑛
𝑚+1 = 𝑥𝐿𝐸𝑂

𝑚    

                 𝒆𝒏𝒅 𝒊𝒇  

                 Modify the positions 𝑥𝑏𝑒𝑠𝑡
𝑚  and 𝑥𝑤𝑜𝑟𝑠𝑡

𝑚  

           𝒆𝒏𝒅 𝒇𝒐𝒓  

            𝑚 =  𝑚 +  1  

𝒆𝒏𝒅 𝒘𝒉𝒊𝒍𝒆  

𝑆𝑡𝑒𝑝 2. 𝑅𝑒𝑡𝑢𝑟𝑛 𝑥𝑏𝑒𝑠𝑡
𝑚  

2.5. Performance evaluation methods 

Different criteria for evaluating hybrid models based 

on their error level and correlation were presented in this 
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section. The evaluation metrics discussed here include Root 

Mean Square Error (RMSE), Mean Absolute Error (MAE), 

Coefficient Correlation (R2), mean absolute percentage 

error (MAPE), scattered index (SI), and performance index 

(PI). The formulas for each of these metrics are provided 

below. An algorithm with a high R2 value close to 1 is 

considered to perform well in both the training and testing 

stages, while lower values of metrics such as RMSE, MAPE, 

and MSE are preferred as they indicate a lower error level 

in the model. 

𝑅2 = (
∑ (𝑝𝑖 − 𝑝̅)(𝑞𝑖 − 𝑞̅)
𝑤
𝑖=1

√[∑ (𝑝𝑖 − 𝑝)
2𝑤

𝑖=1 ][∑ (𝑞𝑖 − 𝑞̅)
2𝑤

𝑖=1 ]
)

2

 (42) 

𝑅𝑀𝑆𝐸 = √
1

𝑤
∑(𝑞𝑖 − 𝑝𝑖)

2

𝑤

𝑖=1

 (43) 

  

𝑀𝑆𝐸 =
1

𝑤
∑𝑞𝑖

2

𝑤

𝑖=1

 
(44) 

𝑀𝐴𝑃𝐸 =
100

𝑊
∑

|𝑞𝑖|

|𝑝𝑖|

𝑤

𝑖

 (45) 

𝑃𝐼 =
1

𝑞̅̅

𝑅𝑀𝑆𝐸

√𝑅2 + 1
 (46) 

𝑆𝐼 =
𝑅𝑀𝑆𝐸

𝑞̅
 

(47) 

𝐸𝑞𝑠. (42 − 47) use the variables 𝑤 to indicate the 

number of samples, 𝑝𝑖  to represent the predicted value, 𝑝̅ 

and 𝑞̅ to denote the mean predicted and measured values, 

respectively, and 𝑞𝑖 to indicate the measured value. 

 

3. Results and discussion  
3.1. Results of Hyperparameters  

In machine learning, hyperparameters are pre-defined 

parameters before training and remain constant during 

training. This research set up the optimizers by specifying 

hyperparameters such as alpha and binarize. By tuning 

these hyperparameters effectively, enhancing the 

optimizer's performance and avoiding problems such as 

underfitting or overfitting the model is feasible. 

Consequently, selecting suitable hyperparameters is 

essential in building a dependable and precise machine-

learning model. 
Table 2. The hyperparameters of developed models. 

 
HPC 
Features 

 
 
models 

Hyperparameter 

alpha binarize 

MDD 
NBAR 4 55 
NBGB 1 667 

 
 

Table 3. The obtained results for the predicted value. 

Phase Models 
Evaluators 

RMSE R2 MSE MAPE PI SI 

Train 

NB 83.694 0.9651 7004.8 3.84 0.023 0.047 

NBAR 34.563 0.9903 1194.6 1.65 0.009 0.019 

NBGB 46.968 0.9764 2206 2.20 0.013 0.0264 

Validation 

NB 62.186 0.9044 3867.1 2.69 0.017 0.035 

NBAR 31.006 0.9733 961.42 1.43 0.008 0.017 

NBGB 49.340 0.9281 2434.5 2.33 0.014 0.028 

Test 

NB 94.399 0.9682 8911.3 4.49 0.027 0.053 

NBAR 41.358 0.9899 1710.5 2.09 0.012 0.023 

NBGB 59.084 0.9844 3491 2.97 0.017 0.033 

 
 
3.2. Comparing models' performance 

The study aimed to predict MDD using three models, 

NB, NBAR, and NBGB, and evaluate their performance 

against experimental measurements during the training, 

validation, and testing phases. The experimental data were 

divided into training, validation, and testing sets to ensure 

an unbiased evaluation. The study used six statistical 

metrics, including R2, RMSE, MAPE, PI, SI, and MAE, to 

comprehensively evaluate and compare the algorithms 

used in this study. The models were evaluated based on 

their R2 values, which indicate the amount of variance in 

the dependent variable that the independent variable can 

explain. The NBAR model exhibited excellent predictive 

accuracy, with the highest R2 values of 0.9903, 0.9733, and 

0.9682 in the training, validation, and testing phases, 

respectively, while the NB model showed slightly lower R2 

values of 0.9651, 0.9044, and 0.9899, respectively. 

Additionally, the study analyzed other error indicators such 

as RMSE, which ranged from 31.006 to 83.694, with the 

NBAR model showing the fewest errors in the validation 

phase and the NB model showing the most errors in the 

training phase. The MAPE value was also analyzed, with the 

NBAR model showing the lowest value of 1.43 in the 

validation phase, indicating the most suitable modeling, 
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while the lowest value of 4.49 belonged to the NB training 

phase. 

Considering the results, it can be concluded that the 

NBAR model outperformed the NB and NBGB models in all 

three stages. However, other factors such as model 

complexity, computational efficiency, and ease of 

implementation should also be considered when selecting a 

model for real-world applications. Overall, the results 

indicate that ARO optimization improved NB's ability to 

predict MDD. Using the NBAR model for predicting MDD 

in real-world applications could be a viable and reliable 

option. 

Figure 3 presents a scatter plot for the correlation 

between measured and predicted MDD values, where the 

R2 and RMSE metrics influence the point distribution. 

Higher R2 values lead to dispersed points, while lower 

RMSE values result in denser points.  

The current illustration includes various elements, such as 

the central line at Y=X, a linear regression model, and two 

lines positioned below and above the central line at Y=0.9X 

and Y=1.1X. When the upper and lower endpoints of these 

lines intersect, it results in incorrect predictions of values 

exceeding or falling short of the actual values. The plot 

indicates that NBAR has high precision, exhibiting less 

dispersion across all phases. In contrast, NB shows more 

excellent dispersion, leading to overestimating and 

underestimating, resulting in less accurate predictions than 

NBAR. Overall, NBAR is more suitable than other hybrid 

models for accuracy and performance during the training, 

validation, and testing phases. 

 

 

 

Fig. 3. The scatter plot for the correlation between predicted and 

measured MDD. 

Figure 4 compares the predicted and measured 

samples, categorized into three parts: training, validation, 

and testing. The analysis of the NBAR model reveals a slight 

dissimilarity between the measured values in the training 

and testing phases, with the latter being higher in most 

instances. Likewise, the predicted points in NBGB exhibit a 

minor difference from the measured values, although its 

precision is inferior to NBAR. The NB model performs less 

effectively than the other two models and shows a relatively 

considerable variance. 
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Fig.4. The comparison between predicted and measured values. 

As depicted in Figure 5, the NB model exhibits the 

highest scatter percentage and dispersion among all the 

models. The introduction of these optimizers had a positive 

impact on the model's performance. Upon comparing the 

obtained models, NBAR stood out with the lowest 

dispersion across all phases. Notably, it displayed the most 

promising results during the initial evaluation, achieving a 

testing error rate of merely 7%. In contrast, NBGB showed 

a higher testing error rate of 10%. Finally, the NB model had 

a training error rate of 22%. These findings emphasize the 

significance of optimization techniques in enhancing model 

performance, with NBAR emerging as the most effective 

model due to its superior performance in both dispersion 

reduction and error rate minimization. 

 

 

 
Fig. 5. The error percentage of developed models. 

Figure 6 showcases a violin diagram that presents the 

models' error percentages. According to the diagram, 

NBAR demonstrated an average error rate of 5%, with 

minimal dispersion and a sharp normal distribution. In 

contrast, NB exhibited dispersion in all three phases, with 

a flatter normal distribution. However, it achieved its 

highest accuracy with an error rate below 20%. While 

NBGB had the most significant and diverse errors, an 

outlier data point exceeding 10% of the data was observed. 

NB had a more widely dispersed distribution than the other 

two models, with a lower frequency of around zero. 

 

 

Fig. 6. The violin diagram for the error percentage of presented models. 

The exhibition of Taylor diagrams for the applied NB, 

NBAR, and NBGB predictive models is shown in Figure 7. 

This diagram is a statistical summary of the observed and 

predicted MDD, which combines the root mean square 

errors (RMSE), correlation coefficients (CC), and the 

normalized standard deviations. From Figure 7, the NBAR 
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model (Combination of the NB model and ARO optimizer) 

is considered the best predictive model, and its results are 

closest to the ideal benchmark observed experimental data. 

 
Fig. 7. The Taylor diagram for the developed models 

4. Conclusion 
The stability of soil depends significantly on its 

maximum dry density (MDD), which is influenced by 

factors such as soil type, compaction effort, and moisture 

content. Ensuring an accurate measurement of MDD is 

essential in engineering and construction to guarantee the 

safety and durability of structures. This study proposed a 

machine learning model based on the NB algorithm to 

predict MDD. To enhance the model's accuracy and 

minimize errors, ARO and GBO meta-heuristic algorithms 

were employed, resulting in the development of three 

models: NBAR, NBGB, and an individual NB model. 

Laboratory samples from published articles were utilized in 

the training, validation, and testing phases to validate these 

models. Several evaluation metrics, including R2, RMSE, 

MSE, PI, and MAPE, were used to compare the 

performance of the models. The study's findings revealed 

that the NBAR models achieved the highest R2 values, while 

the NB model exhibited the lowest R2 value, with a 

difference of 3%. Throughout all three phases, NBAR 

consistently outperformed other methods in accurately 

predicting MDD with high precision. This superiority was 

evident from the significantly lower error rates, with a 62% 

lower RMSE and an 89% lower MSE than NB. While the 

performance of NB and NBGB was weaker than NBAR 

based on all statistical indices, their results were still 

deemed acceptable with values of criteria assessments. In 

contrast, the NBAR model displayed the most appropriate 

performance in the training, validation, and testing stages. 

Overall, machine learning models can be relied upon as an 

alternative to experimental methods for evaluating MDD, 

leading to significant time and energy savings. The research 

highlighted the effectiveness of combining the ARO 

optimizer with NB, resulting in a favorable combination 

that led to accurate predictions of MDD. 
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