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Highlights 

➢ Robustness in battery SoC estimation is a key challenge. 
➢ UIO mitigates disturbances and model uncertainties. 
➢ UIO excels with simplicity and reduced complexity. 
➢ Proven performance makes it ideal for large-scale applications. 

 

Article Info   Abstract 

The robustness of an observer against model uncertainties is a main challenge during the Lithium-
ion battery state of charge (SoC) estimation. Also, for large-scale applications such as electric 
vehicles, disturbances in measurement may increase the SoC estimation error. To overcome this 
problem, this paper presents an Unknown Input Observer (UIO) for the battery SoC estimation. 
This observer can eliminate the effect of the disturbances and model uncertainties. The main 
superiority of such an observer is the lack of chattering and complexity compared to other robust 
methods such as sliding mode observers and Hꝏ. The performance of the proposed method for the 
SoC and terminal voltage estimation has been compared to the Ah-counting method as a commonly 
used method for different applications through a set of simulations and software in the loop 
validation. The results confirm the good performance of the proposed method and show that it is a 
good choice for large-scale applications. 
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Nomenclature 

Parameters Variables 
𝑎1 Identification parameter 𝐹(𝑋, 𝑢) Transient function of the battery model 
𝑎2 Identification parameter 𝐻(𝑆𝑜𝐶) Non-linear relation between the SoC and Voc. 
𝑏1 Identification parameter Tpf Time constant of the RC loop  
𝑏2 Identification parameter Tps Time constant of the RC loop  
  X State vector 

  𝛥𝑓 Unknown unction of nonlinearity and uncertainties 

  𝛷 Benefit factor 

  𝛤 Coefficient of the function 

  𝜏 Process noise 

  ω Measurement noise 
  

1. Introduction 
1.1. Motivation and Incitement  

Rechargeable battery energy storage technologies are 

becoming increasingly necessary as renewable energy 

sources advance. One of the often-used battery types in 
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these systems is the lead-acid battery [1]. Due to their 

advantages over lead-acid batteries, lithium batteries are 

now a very viable substitute in energy storage systems [2]. 

Among these benefits include a longer lifespan, improved 

depth of discharge, stable output voltage, less weight, and 

Journal%20Web%20Page:
https://aeis.bilijipub.com/
mailto:omid.r.iust@gmail.com


           

31 
 

reduced volume. Accurately estimating lithium-ion 

batteries' SoC is one of the biggest issues when dealing with 

them because the SoC, as the major function, affects many 

other functions in the battery management systems (BMS). 

Because of this, research into SoC estimation using various 

methodologies has become increasingly popular. Any 

sensor cannot directly measure the battery SoC since it 

depends on the chemical reactions inside the battery. 

Appropriate estimators are required for this purpose [3]–

[5].  
1.2. Literature Review and Research Gaps 

The two most popular techniques for SoC estimate are 

the impedance measuring approach [6] and the ampere-

hour counting method [7]. Compared to other approaches, 

these are incredibly cheap and straightforward. These 

techniques are substantially less accurate than others and 

susceptible to environmental changes. The Kalman filter is 

one of the recursive mathematical techniques for 

estimating a system's parameters with precise state space 

dynamics [8]. The capability of this filter to estimate the 

state in the presence of noise in the system dynamics or 

measurement is one of its benefits. In other words, this 

filter can estimate system state variables even in the face of 

measurement and process noise. One common approach is 

utilising the Kalman filter to estimate SoC in lithium-ion 

batteries [9]. The extended Kalman filter (EKF) [10], [11] 

and the Unscented Kalman filter (UKF) [12], [13] are 

appropriate alternatives since the battery has nonlinear 

dynamics. The conventional Kalman filter [14] is a suitable 

method for estimating the SoC using the linear dynamics of 

the battery. Due to the linearization in its approach, EKF 

has a minor mistake in the SoC estimation, whereas UKF 

has a greater computational burden. The requirement for 

an accurate dynamic model of the batteries, one of the 

drawbacks of Kalman filters in SoC estimation, means that 

the uncertainties resulting from inaccurately identifying 

the battery model and the variations in the environmental 

conditions of the laboratory test reduce the estimation's 

accuracy. 

Robust estimators are excellent solutions for the issue 

of model uncertainty in batteries. The most popular 

observers for SoC estimations are sliding mode estimators 

[15] and H observers [16]. One drawback of utilizing H 

filters is the high level of mathematical formulas and the 

necessity for extremely strong processors to do complex 

calculations. Sliding-based filters, on the other hand, 

exhibit a chattering phenomenon in their operation, which 

in turn lowers the estimation accuracy. Adaptive forms of 

sliding mode observers [17] resolve this issue. Fuzzy 

systems [18] and neural networks [19] are two intersecting 

methods used to modify the primary filter to lessen 

chattering. Additionally, these robust filters cannot 

estimate the battery SoC in the face of measurement 

disturbances. 

Neural networks [20], intelligent systems, and 

artificial intelligence [21] are additional useful techniques 

for calculating the SoC of lithium-ion batteries. 

Additionally, fuzzy systems [22] are employed as a 

supplementary technique or to estimate the charge level 

directly. Fuzzy systems have the drawback of not having 

good accuracy on their own, necessitating optimization to 

improve accuracy. Some trustworthy and sufficient 

knowledge is also required to set rules in fuzzy systems. The 

battery SoC has recently been estimated using data-based 

techniques [23], like machine learning [24], deep learning 

[25], and reinforcement learning [26]. However, the 

fundamental drawback of these approaches and neural 

networks is the requirement for a complete and trustworthy 

data set to train these intelligent systems. 
1.3. Contributions and Paper Organization 

To overcome the problems of the robust estimation 

methods, such as the chattering of sliding mode observers 

and the complexity of Hꝏ, this paper presents an Unknown 

Input Observer (UIO) for the battery SoC estimation. This 

observer can eliminate the effect of the disturbances and 

model uncertainties. The main superiority of such an 

observer is the lack of chattering and complexity compared 

to other robust methods such as sliding mode observers 

and Hꝏ. The remaining sections of the paper can be 

categorized as follows.  

The modeling of the battery is presented in section 2. 

The proposed method is formulated in section 3. The 

results are discussed in section 4, and section 5 concludes 

the paper. 

2. Modeling of the battery 
Choosing a precise model for the battery cell is one of 

the most crucial factors in the battery SoC estimation. The 

equivalent circuit model (ECM) employed in this study is a 

widely used option for battery modelling in industrial 

applications, particularly EV applications.   

 
Fig. 1. Battery model 
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The battery's nominal capacity and total energy stored 

are shown in Fig. 1. The terminal voltage (Vt) and battery 

discharge (I) are two different concepts. The VOC-

dependent voltage source indicates the battery voltage or 

estimated battery charge, which ranges from 0 to 100%. 

The Coulomb coefficient is chosen to be as much as 1 

in Eq. 1. By combining Fig. 1 and the Kirchhoff voltage law, 

following Equation is gotten: 

𝑉 = 𝑉𝑜𝑐(𝑆𝑜𝑐) − 𝑉1 − 𝑉2 − 𝐼𝑅𝑖 + 𝛥 (1) 

where the electrochemical and concentration 

polarization voltages across C1 and C2, respectively, are 

denoted by V1 and V2. Uncertain, f2, f3, and f4 are model 

errors that have been incorporated into the circuit 

specification so that, in the event of an error, the circuit's 

performance may be tracked. The SoC is derived polarized, 

and the resulting relationship is obtained. 

𝑆�̇�𝐶 = −(
𝐼

𝐶𝑡𝑜𝑡
) + 𝛥𝑓2 (2) (1) 

�̇�1 = −
𝑉1
𝑅1𝐶1

+
𝐼

𝐶1
+ 𝛥𝑓3 (3) (1) 

�̇�2 = −
𝑉2
𝑅2𝐶2

+
𝐼

𝐶2
+ 𝛥𝑓4 (4)  

 

 
Fig. 2. OCV-SoC curve of Li-Battery 

Fig. 2 depicts a nonlinear Voc-SoC curve, but in the 

locations indicated by the red dots, Voc can be introduced 

as a linear function of SoC. Following this: 

𝑉𝑜𝑐(𝑆𝑜𝑐) = 𝑛𝑆𝑜𝑐 + 𝜑 (5) 

where different SoCs have different values for k and v. 

Now, the equations mentioned above can be simplified as 

follows if the discharge flow rate is considered to remain 

constant: 

�̇� = −𝑛(
𝐼

𝐶
) +

𝑉1
𝑅1𝐶1

−
𝐼

𝐶1
+

𝑉2
𝑅2𝐶2

−
𝐼

𝐶2
+ 𝛥𝑓1 (6) 

The battery state space model is obtained by solving 

Eq. 2 in terms of current (I) and inserting the result into Eq. 

3. Then, Eqs. 3 to 6 are recalculated as follows. 

�̇� = −𝑘1𝑉 + 𝑘1𝑉𝑜𝑐(𝑆𝑜𝐶) − 𝑘3𝑉1 − 𝑘4𝑉2 − 𝑎1𝐼 + 𝛥

�̇�𝑜𝐶 = 𝑘2𝑉 − 𝑘2𝑉𝑜𝑐(𝑆𝑜𝐶) + 𝑘2𝑉1 + 𝑘2𝑉2 + 𝛥𝑓2
�̇�1 − 𝑘4𝑉1 + 𝑎2𝐼 + 𝛥𝑓3
�̇�2 − 𝑘3𝑉2 + 𝑎3𝐼 + 𝛥𝑓4

 (7) 

  In these equations, the coefficients are described in 

following Table 1:  

Table 1. Coefficients of the battery model 

Coefficients Value  

k1 (1/R1C1)+(1/R2C2) 

k2 (1/RiC) 

k3 (1/R2C2) 

k4 (1/R1C1) 

a1 (n/C)+(Ri/R1C1)+(1/C1)+(Ri/R2C2) (1/C2); 

a2 (1/C1) 

a3 (1/C2) 

Sthe circuit's inputs are u (t), and the outputs are y (t). 

�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) + 𝛥𝑓(𝑥, 𝑢, 𝑡) (8) 

𝑦(𝑡) = 𝐶𝑥(𝑡) (9) 

The matrices A, B, C, and X values are as follows. 

                                

A= [

-k1 𝑘1 -k3 -k4
𝑘2 -k2 𝑘2 𝑘2
0 0 -k4 0
0 0 0 -k3

] B= |

-a1
0
𝑎2
𝑎3

| 

𝐶 = [1 0 0 0] 
𝑥(𝑡) = [𝑉 𝑉𝑜𝑐(𝑆𝑜𝐶) 𝑉1 𝑉2]

𝑇 
𝑦(𝑡) = 𝐶𝑥(𝑡)                                             

(10) 

 The nonlinear OCV-SOC curve, depicted in Fig. 2, is 

linearized to create Eq. for modelling the battery, with the 

ECM parameters being considered constants (10). 

It can be assumed that the unknown function f(x,u,t) 

represents the matched model uncertainties, including the 

parameter value errors and linearizing errors for Fig. 2. 

𝛥𝑓(𝑥, 𝑢, 𝑡) = 𝛮𝛷(𝑥, 𝑡) (11) 
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Where 𝛮 is the input matrix of the model uncertainties 

,a  nd 𝛷 (x,t) is a unknown bounded function. 

|𝛷(𝑥, 𝑡)| ≤ 𝜓    𝛻𝑥 ∈ 𝑅4, 𝑡 ≥ 0 (12) 

So, the state space model of the battery will be: 

�̇�(𝑡) = 𝐴𝑋(𝑡) + 𝐵𝑢(𝑡) + 𝛮𝛷(𝑥, 𝑡) (13) 

Experimental testing can be used to determine the 

ECM's parameters. In this context, Fig. 3 depicts the 

organization of an experimental test setup. The following is 

a description of each component of this test bench. A 2.4 Ah 

LFPO4 battery. A programmable resistant load. A DSP for 

justifying the load value when the battery is discharging. 

Internal A/D converters for the current and voltage 

measuring. An RS232 serial port for the connection.  

 
Fig. 3. Test bench 

The battery model parameters are extracted using the 

techniques described in the reference[16]. These 

parameters and their values are displayed in Table 2. 

Table 2. Battery model parameters 

Elements 

C2 1380 

C1 44 

C 8635 

R2 39 

R1 2.4 

Ri 91 

3. Proposed observer formulation 
In this paper, the traditional OPF algorithm for  

Suppose the dynamic model of the system whose 

equations are as follows: 

�̇� = 𝐴𝑥 + 𝐵𝑢 + 𝑓(𝑥) + 𝐸𝜑(𝑥,𝑤)
𝑦 = 𝐶𝑥

 (14) 

  where𝑥 ∈ 𝑅𝑛𝑥, 𝑢 ∈ 𝑅𝑛𝑢, and 𝑦 ∈ 𝑅𝑛𝑦are the system 

state, the system input, and the system output, respectively. 

The model uncertainty, s local Lipschitz function, is 

presented by the function 𝑓(𝑥) in the equations. The 

bounded disturbance is included in the function 𝜑(𝑥, 𝑤) ∈

𝑅𝑟which is considered as unknown input. By considering 

the Lipschitz property for the function𝑓(𝑥), Equation (15) 

is obtained as follows: 

‖𝑓(𝑥) − 𝑓(𝑥)‖ ≤ 𝛼‖𝐹(𝑥 − 𝑥)‖ (15) 

Consider the system in (14). To estimate the states, an 

unknown input observer is proposed as follows: 

�̇� = 𝑆𝑧 + 𝑈𝐵𝑢 + 𝑈𝑓(𝑥) +𝑀𝑦
𝑥 = 𝑧 + 𝐿𝑦

 (16) 

x and state vector estimation   where �̂� ∈ 𝑅𝑛𝑥 and 𝑧 ∈

𝑅𝑛𝑥 denote the estimation of x and state vector of (16), 

respectively. Also, 𝑆 ∈ 𝑅𝑛𝑥×𝑛𝑥, 𝑀 ∈ 𝑅𝑛𝑥×𝑛𝑦, 𝐿 ∈ 𝑅𝑛𝑥×𝑛𝑦, and 

𝑈 ∈ 𝑅𝑛𝑥×𝑛𝑥are the observer gains which must be designed. 

The estimation error dynamics 𝑒 = 𝑥 − �̂� can be calculated 

as follows, with 𝑀 = 𝑀1 +𝑀2:                                                                                                             

𝑒 = 𝑥 − �̂� = 𝑥 − 𝑧 − 𝐿𝑦 = (𝐼𝑛 − 𝐿𝐶)𝑥 − 𝑧 

�̇� = (𝐴 − 𝐿𝐶𝐴 −𝑀1𝐶)𝑒 + (𝐴 − 𝐿𝐶𝐴 −𝑀1𝐶 − 𝑆)𝑧 + [(𝐴 − 𝐿𝐶𝐴 −𝑀1𝐶)𝐿 − 𝑀2]𝑦

+[(𝐼𝑛 − 𝐿𝐶)𝐵 − 𝑈𝐵]𝑢 + (𝐼𝑛 − 𝐿𝐶)𝑓(𝑥) − 𝑈𝑓(�̂�) + (𝐼𝑛 − 𝐿𝐶)𝐸𝜑(𝑥, 𝑤)
 

(17) 

Now, if the following equations hold:
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(𝐼𝑛 − 𝐿𝐶)𝐸 = 0 (18) 

𝑆 = 𝐴 − 𝐿𝐶𝐴 −𝑀1𝐶 (19) 

𝑈 = 𝐼𝑛 − 𝐿𝐶 (20) 

𝑀2 = 𝑆𝐿 (21) 

then (5) is simplified as follows: 

�̇� = 𝑆𝑒 + (𝐼𝑛 − 𝐿𝐶)(𝑓(𝑥) − 𝑓(�̂�)) (22) 

  The influences of state disturbances are completely 

decoupled in (22). The proposed method aims to design the 

matrix S so that the �̇� is asymptotically stable. The following 

lemmas help obtain the theorem. 

Lemma 1: For real matrices 𝐻,  𝐺and𝜀 > 0: 

𝐻𝑇𝐺 + 𝐺𝑇𝐻 ≤ 𝜀𝐻𝑇𝐻 + 𝜀−1𝐺𝑇𝐺 (23) 

Lemma 2 (Schur complement): The following 
inequalities are equivalent: 

   (
𝑄 𝑇

𝑇𝑇 𝑁
) > 0 ≡ {

𝑁 > 0,   𝑄 − 𝑇𝑁−1𝑇𝑇 > 0

𝑄 > 0,  𝑁 − 𝑇𝑇𝑄−1𝑇 > 0
 (24) 

  where 𝑄 = 𝑄𝑇and 𝑁 = 𝑁𝑇are nonsingular 
matrices.   

  Theorem 1: Consider the system (14). A robust 

observer formed as (16) exists to decouple the influences of 

state-disturbances in the estimation error of the observer, 

provided that there exist matrices 𝑃 > 0, 𝑌,  𝑊and 

scaepsilon that the following inequality be feasible: 

(
𝐴𝑇𝑃 + 𝑃𝐴 − 𝑃𝑎𝐶𝐴 −𝑊𝑏𝐶𝐴 − 𝑌𝐶 − 𝐶𝑇𝑌𝑇 − 𝐴𝑇𝐶𝑇𝑎𝑇𝑃

−𝐴𝑇𝐶𝑇𝑏𝑇𝑊 + 𝜀𝛼2𝐹𝑇𝐹𝐼𝑛
𝑃 − 𝑃𝑎𝐶 −𝑊𝑎𝐶

∗ −𝜀𝐼

)   <  0 (25) 

Where 𝑌 = 𝑃𝑀1 ,    𝑊 = 𝑃𝐿0,   𝑎 = 𝐸(𝐶𝐸)†,   𝑏 = 𝐼 −

(𝐶𝐸)(𝐶𝐸)†,   𝐿 = 𝑎 + 𝐿0𝑏. 

Proof. By considering the standard Lyapunov function, 

there is: 𝑉(𝑒) = 𝑒𝑇𝑃𝑒 ;     𝑃 = 𝑃𝑇   > 0 

The derivative of V is calculated as follows: 

�̇�(𝑒) = �̇�𝑇𝑃𝑒 + 𝑒𝑇𝑃�̇� 

⇒ �̇�(𝑒) = 𝑒𝑇(𝐴𝑇𝑃 + 𝑃𝐴 − 𝑃𝐿𝐶𝐴 − 𝑃𝑀1𝐶 − 𝐶𝑇(𝑃𝑀1)
𝑇 − 𝐴𝑇𝐶𝑇𝐿𝑇𝑃)𝑒 

+𝑒𝑇𝑃(𝐼𝑛 − 𝐿𝐶)(𝑓(𝑥) − 𝑓(�̂�)) + (𝑓(𝑥) − 𝑓(�̂�))𝑇(𝐼𝑛 − 𝐿𝐶)𝑇𝑃𝑒 

(26) 

According to Lemma 1 and (2): 

𝑒𝑇𝑃(𝐼𝑛 −𝐻𝐶)(𝑓(𝑥) − 𝑓(�̂�)) + (𝑓(𝑥) − 𝑓(�̂�))𝑇(𝐼𝑛 − 𝐿𝐶)𝑇𝑃𝑒 

≤
1

𝜀
𝑒𝑇𝑃(𝐼𝑛 − 𝐿𝐶)(𝐼𝑛 − 𝐿𝐶)𝑇𝑃𝑇𝑒 + 𝜀 ∥ 𝑓(𝑥) − 𝑓(�̂�) ∥2 

≤
1

𝜀
𝑒𝑇𝑃(𝐼𝑛 − 𝐿𝐶)(𝐼𝑛 − 𝐿𝐶)𝑇𝑃𝑇𝑒 + 𝜀𝛼2𝑒𝑇𝐹𝑇𝐹𝑒 

(27) 

By applying (27) in (26), the following Equation is 

obtained have: 

�̇�(𝑒) ≤ 𝑒𝑇(𝐴𝑇𝑃 + 𝑃𝐴 − 𝑃𝐿𝐶𝐴 − 𝑃𝑀1𝐶 − 𝐶𝑇(𝑃𝑀1)
𝑇 − 𝐴𝑇𝐶𝑇𝐿𝑇𝑃 

+
1

𝜀
𝑃(𝐼𝑛 − 𝐿𝐶)(𝐼𝑛 − 𝐿𝐶)𝑇𝑃𝑇𝑒 + 𝜀𝛼2𝐹𝑇𝐹)𝑒 

(28) 

Assuming𝐿 = 𝑎 + 𝐿0𝑏, 𝑎 = 𝐸(𝐶𝐸)†, 𝑏 = 𝐼 −

(𝐶𝐸)(𝐶𝐸)†, 𝑌 = 𝑃𝑀1, and 𝑊 = 𝑃𝐿0, (28) can be simplified 

as follows: 
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�̇�(𝑒) ≤ 𝑒𝑇(𝐴𝑇𝑃 + 𝑃𝐴 − 𝑃𝑎𝐶𝐴 −𝑊𝑏𝐶𝐴 − 𝑌𝐶 − 𝐶𝑇𝑌𝑇 − 𝐴𝑇𝐶𝑇𝑎𝑇𝑃 − 𝐴𝑇𝐶𝑇𝑏𝑇𝑊 

+
1

𝜀
𝑃(𝐼𝑛 − 𝐿𝐶)(𝐼𝑛 − 𝐿𝐶)𝑇𝑃𝑇 + 𝜀𝛼2𝐹𝑇𝐹)𝑒 

(29) 

The designed observer estimation error will be 

asymptotically stable; therefore, Equation (30) is obtained: 

𝐴𝑇𝑃 + 𝑃𝐴 − 𝑃𝑎𝐶𝐴 −𝑊𝑏𝐶𝐴 − 𝑌𝐶 − 𝐶𝑇𝑌𝑇 − 𝐴𝑇𝐶𝑇𝑎𝑇𝑃 − 𝐴𝑇𝐶𝑇𝑏𝑇𝑊 

+
1

𝜀
𝑃(𝐼𝑛 − 𝐿𝐶)(𝐼𝑛 − 𝐿𝐶)𝑇𝑃𝑇 + 𝜀𝛼2𝐹𝑇𝐹 < 0 

(30) 

Using Lemma 2, the inequality (25) is confirmed, and 

the proof of Theorem 1 is completed.  

Lemma 3: The necessary and sufficient conditions 

for the UIO (16) to exist for the system (1) can be stated as 

follows: 
1)  𝑟𝑎𝑛𝑘(𝐶𝐸) = 𝑟𝑎𝑛𝑘(𝐸) 
2) ((𝐼 − 𝐿𝐶)𝐴, 𝐶)is a detectable pair 

Proof: See [27]. 

4. Results and discussion  
4.1.Simulation results 

A comprehensive set of simulations has been run in 
the MATLAB version 2020 software to validate the 
suggested method, and the results are reported in this 
section. As described in the second section, a non-linear 
dynamic model has been applied in these simulations. 
Hardware requirements for the ideal computer system to 
run these simulations are as follows. 12 GB of RAM with an 
Intel Core i7-3537U processor operating at 2.00 GHz. 
These simulations use a pulse current with a 5-amp 
magnification, 500 seconds, and a 250% bandwidth as the 
input to the battery current model. In Figure 4, the 
estimated output voltage of the battery is shown next to its 
actual value as one of the state variables. This figure shows 
that the suggested estimator successfully estimated the 
output voltage with respectable accuracy and a minimum 
overshoot of 0.35 v. The suggested method also offers a 
fast-estimating speed, allowing for convergence in less than 
7.5 seconds. Additionally, the battery SoC estimation is 
shown in Figure 5. In a manner, this figure also supports 
the earlier one. To put it another way, the suggested 
estimator has been able to estimate the SoC with a 
respectable accuracy of 0.34% better than the Ah-counting 
technique. It is also obvious in the second portion of this 
figure that the proposed approach's SoC estimation error is 
less than 0.35% of the Ah-counting method. The suggested 
method for SoC estimate also converges in less than 7.3 
seconds at a respectable pace. Instead of an actual battery, 
a simulated battery model has always been employed in 
these simulations. Figures 6 and 7 in the battery's circuit 
model depict the expected voltage for two RC loops. These 
graphs compare the estimated voltages to their actual 
values taken from the simulated battery model. The 

accuracy of the suggested method is very high, as can be 
seen from this figure, and it has been able to predict these 
voltages with an overshoot of less than 2.4e-2 volts. 

 

 
Fig. 4. Terminal voltage estimation and its error 
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Fig. 5. SoC estimation and its error 

 
Fig. 6. V1 estimation 

 
Fig. 7. V2 estimation 

4.2. Software-in-the-Loop (SIL)  
A series of lab tests have been carried out to evaluate 

the proposed method's performance using real-world data 
per Figure 8. This process involved simulating the proposed 
method using the voltage and current data from practical 
experiments and extracting the findings. In Figure 9, the 
performance outcomes of the suggested approach and the 
Ah-counting method are also contrasted. This statistic 
makes it evident that, in comparison to the Ah-counting 
approach, the proposed method has been able to estimate 
the battery charge level with an accuracy of 0.32%. 
Conversely, the proposed method's convergence rate is 
much faster than the Ah-counting method, allowing it to 
converge in less than 7.4 seconds. 

 
Fig. 8. SIL for SoC estimation 

5. Conclusions 
This paper tackled the disturbances and uncertainty 

problem for the SoC estimation in lithium-ion batteries and 
tried to eliminate the effect of the disturbances and model 
uncertainties. Also, the main superiority of this observer is 
the lack of chattering and complexity compared to other 
robust methods such as sliding mode observers and Hꝏ. 
The results confirm the good performance of the proposed 
method and show that it is a good choice for large-scale 
applications. According to the results, the proposed 
observer can estimate the SoC more accurately than a 
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commonly used SoC estimation method, Ah-counting, by as 
much as 0.32%.  

The suggested method also offers a fast-estimating 
speed, allowing for convergence in less than 7.5 seconds. To 
put it another way, the suggested estimator has been able 
to estimate the SoC with a respectable accuracy of 0.34% 
better than the Ah-counting technique. It is also obvious 
that the proposed approach's SoC estimation error is less 
than 0.35% of the Ah-counting method. The suggested 
method for SoC estimate also converges in less than 7.3 
seconds at a respectable pace. This method is a very good 
choice for applications in which the complexity of 
calculations and robustness against disturbance and model 
uncertainty are very important. The SoC estimation using a 
combined method, including machine learning and sliding 
mode observer, is suggested for future works. 
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