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Highlights 
 

➢ Grid security faces growing cyber threats. 

➢ Load redistribution attacks cause grid confusion. 

➢ Efficient resource allocation for defense. 

➢ Quick algorithms protect key substations.  

 

Article Info   Abstract 

Power grid vulnerability to various cyber-attacks will undoubtedly increase with the widespread use 
of cutting-edge computer technologies in power systems monitoring and control. A common and 
effective cyber-attack on power grids is load redistribution (LR), which has the potential to confuse 
power re-dispatch and result in unneeded load loss. To protect the power system, it is essential to 
devise strategies for the best distribution of the scarce defensive resources, especially those that 
take the actions of the attackers into account. In order to stop LR attacks, the best budget allocation 
and the interplay between attack and defense are examined in this study. In particular, the bi-level 
modeling of LR attacks incorporates the attack and defense interactions. Based on their importance 
as targets for cyber protection, a few significant substations are chosen. To reduce the projected 
load loss subject to the attacker's capability, an efficient budget allocation approach based on greedy 
algorithm is devised for protecting the key substations. To select the optimum attack method and 
pinpoint the most vulnerable buses for crucial transmission assets, a quick greedy algorithm is 
proposed. The proposed approaches are put to the test in various scenarios using an IEEE test 
systems, and the simulation results show that they work. This study provides fresh information on 
efficiently preventing and reducing the LR attack. 
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Nomenclature 

a Load shift factor. M Set of all measurements. 

ak
min 

The minimum load shift factor that is the start 
point for transmission asset k∈K to have 
overflow. 

m Index for measurement. 

cg Production cost of unit g𝜖G N Set of all buses. 

e nm  1 vector of measurement noise errors. N1 Number of states that can be compromised by 
attacker. 

G Set of all generation units. nb Number of buses. 
g Index for generation unit. nbr Number of transmission branches. 
G(i) Set of all generation units at bus i𝜖N  nm Number of measurements. 
H nm  nb Jacobian matrix of the system. Pg Fixed dispatch point of unit g∈G 
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H’ 
nb  nb dependency matrix between power 
injection measurements and state variables . 

Pk
max Continuous thermal rating of transmission branch 

k∈K. 
H’i ith row of H’(i∈N) Pg

max Upper limit on generation capacity of unit g∈G. 
i İndex for bus Pg

min
 Lower limit on generation capacity of unit g∈G. 

K Set of all transmission branches. 
PTDFR

k, i Power transfer distribution factor for branch k∈K 
and bus I N (Iinjection) with regard to reference 
bus R 

k İndex for transmission branch. 
ubi Upper bound for load deviation at each bus i∈N 

nm  1 vector of measurements. 
LI Active load (MW) at bus i∈N.  Residual-based bad data detector threshold. 

lbi 
Lower bound for load deviation at each bus 
i∈N. 

  

  

1. Introduction 
Global efforts to protect the environment and promote 

resource conservation have prompted the creation of the 

next-generation power grid. One important difference 

between the smart grid and the traditional grid is the 

widespread employment of numerous cutting-edge 

intelligent devices and the associated cyber information 

and control technology. Smart meters, phasor 

measurement units, IEC 61850-based substations, and 

other examples of novel applications are typical examples 

[1]. The power systems have also been combined to 

accommodate electric vehicles [2]. Innovative approaches 

are being put into use for congestion control [3] and 

demand response [4]. The power grid gradually becomes a 

cyber-physical smart grid as a result of all of these 

applications, which also increase the operational flexibility 

of the grid while increasing the dependency of the grid 

reliability on the related cyber network. However, as the 

power grid's cyber layer becomes more complex, cyber 

vulnerabilities in its digital parts inevitably arise, making it 

more vulnerable to various cyber-attacks. Intruders might 

compromise a wide-area network, execute a man-in-the-

middle assault, and then alter the instructions supplied to 

the circuit breaker. Additionally, the power system's 

operation could be disrupted if the lines or generators trip. 

Additionally, attackers have the ability to alter the 

measurements sent to a control center by breaking the 

password or taking advantage of SCADA network flaws. 

Denial of service attacks are another option for attackers to 

use to obstruct or slow down communication between the 

control center and the substations. System synchronization 

issues or the unavailability of crucial field devices could 

result from this. The power grid might be severely damaged 

by cyber-attacks like these, and cyber mishaps and attacks 

on the energy industry have already happened all over the 

world [5]. The power system's cyber security issues have 

recently attracted a lot of attention [6], [7]. 

A reliable state estimate is a vital part of the energy 

management system, providing the power grid operator 

with a thorough understanding of the power grid's current 

condition. If the state estimate result is manipulated, the 

power system operator could be misled into making poor 

choices. Recently, it was discovered in Ref. [8] that 

attackers might evade the detection of faulty data and 

purposefully influence the results of the state estimation by 

purposefully manipulating the measurements. 

Additionally, two mathematical models looking at the 

immediate effect and delayed consequence as well as a load 

redistribution assault, a plausible false data injection 

attack, were looked at in References [9] and [10]. The 

authors of these two papers [11] used bi-level optimization 

to examine the attacker-defender dynamic, a technique that 

is often used in the fields of power system security research 

and energy management. 

This study investigates the load-redistribution (LR) 

assault, which is a kind of FDIA used to disrupt power grids. 

In order to cause either physical and financial disruption to 

power grids, LR assaults seek to fudge bus injection 

measurements. In order to simulate LR assaults, some 

researchers [12]–[18] proposed bi-level or attacker–

defender optimization problems with goals like maximizing 

operating cost or power flow on a target line. The bi-level 

assault model in [12] describes the attacker's aim, which is 

to maximize operational cost (generating cost + load 

shedding cost), and the system's reaction, which is based on 

a base-case security-constrained economic dispatch 

(SCED). Ref [13] and [14] propose bi-level assault models. 

Their higher-level aim was to maximize physical damage to 

a target line, while their lower-level goals were to 

characterize the systems' reactions using a nonlinear 

alternating current optimum power flow (ACOPF) and 

DCOPF, respectively. [17] also examined the immediate 

and long-term financial and medical effects of LR assaults. 

They offered a bi-level problem to assess the worst-case 

economic outcome of an assault, their immediate offensive 

aim. They created a tri-level problem to maximize 

operating expense after tripping an overloaded line. 

Numerous research have been conducted regarding 

the defense tactics for cyber-attacks. It was demonstrated 

in Refs. [19] and [20] that attackers can compromise the 

results of the state estimation by simply knowing a portion 

of the information about the structure of the power grid. 

Using the AC power system model, Ref. [21] published a 

graphical way to safeguard the power grid against 
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fabricated data injection assaults by securing carefully 

selected measurements. Protection-based and detection-

based defensive strategies were analyzed in Ref. [22] to find 

the crucial parameters for making the power system 

immune to the fake date injection attack. Ref.[23] 

investigates the attack and defense of incorrect data 

injection in the electric power market using a game-

theoretic approach. Both Voltage Control and Automated 

Generation Control were studied in Refs. [24] and [25], 

where the attacker-defender interaction was studied via a 

Markov game. In references [26] and [27], cyber-physical 

switching attacks with the potential to disrupt the power 

system are analyzed. In references [28] and [29], cyber-

attacks on the SCADA systems of the energy and water 

utilities are examined. [30] proposed a sparsity-based 

method for identifying the error in the estimate of the DC 

power flow state. 

Aside from device status, the safe and efficient 

functioning of the power system is heavily reliant on the 

operators' responsiveness to the system's condition. As a 

consequence, there are two sorts of attacks against power 

system operations: those that can directly change device 

statuses, such as tripping lines and isolating buses, and 

those that can't but can fool power system monitoring and 

dispatch, such as fake data injection assaults and LR 

attacks. A significant amount of work has gone into finding 

strategies to secure the power system against the first kind 

of attack [24-27]. However, it is equally critical to develop 

ways to avoid the second kind of assault. LR attacks, as an 

example of a situation involving deceptive data injection, 

might mislead the power dispatch and result in significant 

load loss. As a result, we use the LR assault to illustrate the 

second kind of strike. 

Following is a synopsis of the paper's most significant 

findings. 

(1) System operators may rapidly discover the most 

susceptible buses even in networks with numerous nodes 

according to a mathematical argument that a greedy 

algorithm may best solve the exploitable structure of LR 

attack issues. 

(2) Using knowledge from the power systems area to 

find a structure in LR assault problems that may be 

exploited, so allowing operators to anticipate the attackers' 

actions. 

(3) A method is suggested for making the most 

efficient use of the limited number of processing power 

management units (PMU) in order to reduce the 

pessimistic loss brought on by LR attacks.  

Specifically, we will highlight the following 

contributions: 

1. We propose a novel approach to protecting power 

systems from load redistribution attacks by 

optimizing the allocation of defensive resources to 

critical substations. 

2. We demonstrate the effectiveness of our approach 

through simulations on the IEEE test systems, 

which show significant reductions in projected load 

loss. 

3. We develop a bi-level modeling framework that 

incorporates the interaction between attack and 

defense strategies, providing a more 

comprehensive and realistic representation of the 

security situation. 

4. We propose an efficient budget allocation approach 

based on the greedy algorithm that considers the 

attacker's capabilities and optimizes the allocation 

of defensive resources to protect the most critical 

substations. 

This paper's remaining sections are structured as 

follows. Section 2 provides a high-level overview of state 

estimates and LR attacks. In Section 3, we see how a greedy 

algorithm was used to decide which vital substations 

needed protection. In Section 4, we formulate and solve the 

optimal PMU allocation problem. Section 5 provides case 

studies based on the IEEE 14-bus and IEEE 118-bus 

systems, while Section 8 wraps up the paper. 

 

2. Brief Description of FDI Attacks 
A. Bypass BDD by FDI Attack 

It uses linear equations to relate measured quantities 

to state variables (voltage angles) in the DCSE procedure. 

These linear equations are modeled as matrices in Eq. 1: 

 

𝐙 = 𝐇𝐱 + 𝐞, (1) 

The 2-norm of the measurements residual is usually 

compared to a specified value (τ) to assess SE process 

precision. If the residual 2-norm exceeds, Z has 

unsatisfactory data. In equation 2, the residual's 2-norm is 

derived as follows: II.II is the Euclidean norm, which 

specifies the vector coordinate's distance from the vector 

space's origin, and xx is the nb*1 vector of estimated states. 

 

∥ 𝐑 ∥𝟐=∥ 𝐙 − 𝐇𝐱̂ ∥𝟐. (2) 

A key theorem in [31] states that the vector of 

contaminated measurements Za=Z+a, where a stands for 

the malicious data added to real measurements, may avoid 

residual-based BDDs if it is a linear combination of H. In 

order to show that the residual-based BDD is unable to 

recognize the attack vector a, the authors in [31] created 

a=Hc. 

B. LR Attacks 
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Every LR assault begins with false bus injection 

measurements. Because of the direct connection between 

the control room and the power plants, it is expected that 

in LR attacks, attackers would not tamper with generation-

related measures. It is also preferable to prevent deviations 

at zero injection buses. 

According to this research, increasing loads on certain 

buses while lowering loads on others is the only viable 

approach for launching an LR assault on electricity grids. 

The net load must be maintained constant to prevent 

frequency issues. As a result, power flow measurements 

should be adjusted by attackers to account for fluctuations 

in load. In addition, the load variation at each bus must fall 

within a narrow range of fixed thresholds. Since the load 

variations are larger than the short-term load estimates, the 

operator would draw attention to that particular set of load 

data. Most of the time, these constants are determined as a 

percentage of the projected load value at each bus in both 

directions. 

An undetected LR attack is then launched, in which a 

tainted set of loads and a set of fraudulent dispatch points 

are fed into the SCED, resulting in unsafe or inefficient 

system operation. To optimize the flow of a targeted 

transmission branch (line l) with restricted access to certain 

meters, as shown in Fig. 1 [14], for example, a bi-level LR 

attack scenario might be used. At the highest level, the 

attacker takes into account both the available resources 

(N1) and the load fluctuations on the target line to achieve 

maximum power flow. The bottom layer is a dynamic 

counterattack planning function (DCOPF) that mimics the 

system's response to the assault vector produced on the 

upper level.

 

Fig. 1. Bi-level load redistribution attack model 
 
 

3. Modeling And Methodology 
On the basis of our extensive power system 

understanding, we put out a detection strategy against LR 

attacks. First, a structure that can be exploited to solve the 

fundamental issue with bi-level LR attack concerns is 

found. The theory for the optimality requirements of that 

exploitable structure is then used to construct and explain 

the suggested method. 

A. The Core Issue's Identified Exploitable Structure 

It is the goal of LR attacks to cause as much physical 

damage as possible to a target transmission asset by 

shifting load measurements up and down. The LR attack 

problems' central challenge is described as the 

maximization of line power flow relative to the system's 

resource flexibility. 

Maximize
𝐇𝐢

′𝐜
± ∑  

𝑖∈𝑁

  (𝐇𝐢
′𝐜)𝑃𝑇𝐷𝐹𝑙,𝑖

𝑅  (3) 

s.t. − 𝛼𝐿𝑖 ≤ 𝐇𝐢
′𝐜 ≤ 𝛼𝐿𝑖𝑖 ∈ 𝑁, (4) 

∑  

𝑖∈𝑁

 𝐇𝐢
′𝐜 = 0, (5) 

To stress the need of bus angle changes for attackers to 

achieve desirable load variations, we utilized the 𝐇𝐢
′𝐜. If, due 

to the aforementioned issue, the load on bus 2 deviates by 

5 MW (𝐇2
′ 𝐜 = Δ𝐿2 = 5MW), the attacker must ensure that 

the value of 𝐇𝟐
′ 𝐜 is 5 MW. Each bus's predicted load is 

shown as 𝐿𝑖, and load shift factor is shown as α. 
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The primary decision factors for problems (3)–(5) are 

the load deviations. This is done so that the overflow on a 

specific transmission asset may be maximized. The 

overflow direction on a target transmission asset, according 

to the notation, may be either positive or negative 

depending on the flow of power before the assault on the 

target asset. For instance, in equation 3, the attacker should 

use "plus" if the pre-attack power flow of the target asset is 

"plus" 100 megawatts (MW), and they should use "minus" 

if the pre-attack power flow is "minus" 100 megawatts 

(MW). 

For 4 to hold, the allowed range for bus-to-bus 

variation must be less than or equal to 4% of the bus's 

estimated load (they also require that there be no change 

for zero injection buses). Requirement 5 ensures that the 

after-LR-assault net burden does not change. 

This research exclusively considers linear optimum 

power flow models due to the fact that the unique structure 

of the classical DCOPF is caused by Kirchhoff's Voltage Law 

(KVL) and Kirchhoff's Current Law (KCL), which are 

present in all optimal power flows. However, non-convex 

ACOPF formulations are within the scope of this 

investigation (OPFs).[32], [33] 

B. Finding the sensitive buses by Greedy Algorithm 

The next step is to show that, from the perspective of 

operations research, the central issue may be optimally 

addressed by means of a greedy algorithm. In order to put 

together a solution to a mathematical problem, greedy 

techniques make a sequence of choices. All of these choices 

are interconnected, and the ones taken at the outset of the 

problem-solving process affect the options available later 

on. At each stage, a greedy algorithm considers the current 

value of the alternatives available and picks the one that 

provides the best local result. The algorithm that results 

from such a choice is known as a "greedy algorithm" 

because of its excessive focus on maximization of reward. 

Greedy algorithms give great answers to certain 

mathematical problems. For the fractional knapsack 

problem, for instance, it yields the global optimal [34]. 

The mathematical argument that a greedy algorithm 

may handle problems (3)–(5) optimally is given in the 

section that follows. As shown in the following theorem, if 

a greedy algorithm is employed to find a solution to this 

issue and at least one of the choice variables (Δ𝐿𝑖) is at its 

lower limit (𝑙𝑖) or upper bound (𝑢𝑖), then optimality will be 

achieved. 

Theorem 1. Feasible solution (Δ𝐿1, … , Δ𝐿𝑛𝑏
) is optimal 

if and only if, whenever 𝑃𝑇𝐷𝐹𝑙,𝑖
𝑅 > 𝑃𝑇𝐷𝐹𝑙,𝑗

𝑅 , we find that 

Δ𝐿𝑖 = 𝑢𝑖 or Δ𝐿𝑗 = 𝑙𝑗 (or both). 

Assume, contradictorily, that there is a unique best 

solution for 𝑃𝑇𝐷𝐹𝑙,𝑖
𝑅 > 𝑃𝑇𝐷𝐹𝑙,𝑗

𝑅 , Δ𝐿𝑖 < 𝑢𝑖, and Δ𝐿𝑗 > 𝑙𝑗. 

Compute 𝛿 = min(𝑢𝑖 − Δ𝐿𝑖 , Δ𝐿𝑗 − 𝑙𝑗). Then, add 𝛿 to Δ𝐿𝑖 

and subtract it from Δ𝐿𝑗, that suggests another approach 

that could work. However, ∑𝑡
𝑛𝑏  Δ𝐿𝑡𝑃𝑇𝐷𝐹𝑙,𝑡

𝑅  increases by 

𝛿(𝑃𝑇𝐷𝐹𝑙,𝑖
𝑅 − 𝑃𝑇𝐷𝐹𝑙,𝑗

𝑅 ), which is a good thing. Therefore, it is 

clear that this is not the best possible solution. 

Suppose by contradiction 𝐒 = (Δ𝐿1, … , Δ𝐿𝑛𝑏
) is a 

feasible solution for which whenever 𝑃𝑇𝐷𝐹𝑙,𝑖
𝑅 > 𝑃𝑇𝐷𝐹𝑙,𝑗

𝑅 , 

Δ𝐿𝑖 = 𝑢𝑖 or Δ𝐿𝑗 = 𝑙𝑗 but is not an optimal solution. Choose 

an optimal solution 𝐎 = (𝑦1, … , 𝑦𝑛𝑏
) in which the number of 

times that Δ𝐿𝑡 ≠ 𝑦𝑡 , (𝑡 ∈ 𝑁) is as small as possible. Note that 

∑𝑡
𝑛𝑏  𝑦𝑡𝑃𝑇𝐷𝐹𝑙,𝑡

𝑅 > ∑𝑡
𝑛𝑏  Δ𝐿𝑡𝑃𝑇𝐷𝐹𝑙,𝑡

𝑅 . Because ∑𝑡
𝑛𝑏  𝑦𝑡 = ∑𝑡

𝑛𝑏  Δ𝐿𝑡 =

0 there is an item 𝑎 for which 𝑦𝑎 > Δ𝐿𝑎 and another item 𝑏 

for which 𝑦𝑏 < Δ𝐿𝑏. It follows that Δ𝐿𝑎 < 𝑢𝑎 and Δ𝐿𝑏 > 𝑙𝑏 

(by the conditions that S satisfies), and hence that 

𝑃𝑇𝐷𝐹𝑙,𝑎
𝑅 ≤ 𝑃𝑇𝐷𝐹𝑙,𝑏

𝑅 . Let 𝛿 = min(𝑦𝑎 − Δ𝐿𝑎 , Δ𝐿𝑏 − 𝑦𝑏). In 𝐎, 

subtract 𝛿 from 𝑦𝑎 and add 𝛿 to 𝑦𝑏, to get a feasible solution 

𝐎′ that changes ∑𝑡
𝑛𝑏  𝑦𝑡𝑃𝑇𝐷𝐹𝑙,𝑡

𝑅  by 𝛿(𝑃𝑇𝐷𝐹𝑙,𝑏
𝑅 − 𝑃𝑇𝐷𝐹𝑙,𝑎

𝑅 ). 

Now if 𝑃𝑇𝐷𝐹𝑙,𝑎
𝑅 < 𝑃𝑇𝐷𝐹𝑙,𝑏

𝑅 , 𝐎′ yields a larger sum that does 

𝐎; this contradicts the optimality of 𝐎. So, this must mean 
that 𝑃𝑇𝐷𝐹𝑙,𝑎

𝑅 = 𝑃𝑇𝐷𝐹𝑙,𝑏
𝑅 . If 𝐎 is an ideal solution with the 

fewest such discrepancies, then 𝐎′ is also optimal, but by 

construction, it disagrees with S on fewer things than 𝐎 

does. As a result, it is determined that there cannot be an 𝐎 

and that S is therefore the best option. 

This proof of global optimality, given a target 

transmission asset, allows for the development of a 

mechanism that can foresee the actions of attackers and 

pinpoint the weak buses. LR assaults are easy to spot since 

the attackers' methods are so simple, and this proof shows 

that the fundamental problem's identified structure can be 

handled using a simply sorting strategy. Operators can 

quickly identify the vulnerable buses for any crucial 

transmission asset by employing this approach. As a result, 

attackers are unable to find a global solution (also very close 

to optimality). Attackers must therefore use some sort of 

randomness to prevent detection. It is anticipated that even 

if attackers can set up a scenario in which randomness is 

applied to their strategy, the suggested assault defense 

mechanism cuts off a significant portion of the viable space, 

making the repercussions of this type of attacks very 

minimal. 

 

4. Concept of Observability and PMU 
Allocation 

A. Observability of Power systems 

In general, the power system observability means the 

estimation of network variables to estimate the system 

state. If the network state estimation is calculated and if the 

grid state estimation encounters a problem, the network 

will not be observable [35]. The network variables are 

usually considered as buses phasor voltage. When phasor 
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units are connected to a bus, the voltage and its phase angle 

can be measured. They can also figure out the phasor of all 

the branches that are currently wired to that bus. Therefore, 

utilizing the fundamental principles of KVL, KCL of power, 

we can determine the magnitude and phase angle of voltage 

on buses linked to buses fitted with phasor measurement 

units. Therefore, buses in which phasor measurement units 

are installed have direct observability, and buses connected 

to buses with phasor measurement units have indirect 

observability. Buses that do not have relationship with 

buses with phasor measurement units are not observable 

(Fig 2).

PMU

PMUPMU

 
Not observable network    observable network  

Not observable part    

Fig. 2.  Network observability using PMU 

 

B. Formulization of PMU Allocation Problem 

The voltage and current phasors of a bus and the 

voltage phasors of all branches linked to that bus can be 

estimated by a PMU put in the bus. Thus, when PMU is 

installed at strategic points in the network, the information 

needed to observe the systems can be obtained. Estimating 

the network observability and reducing the number of PMU 

are the two main goals.  In this paper, the location of phasor 

units is investigated so that in addition to the 

mineralization of number of required units, the peripheral 

objectives including the largest number of observability and 

total observability of entire network can be fulfilled. After 

identifying all crucial transmission assets' vulnerable 

buses, For a system with n buses, the optimal location 

problem is expressed via the equation (6) [36]:  

𝑚𝑖𝑛 ∑ 𝑤𝑖𝑥𝑖

𝑛

𝑖=1

 (6) 

𝑠. 𝑡      𝑦 = 𝐴𝑥 ≥ 𝑏 (7) 

𝑥(𝑝) = 1        𝑝 ∈ 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑑 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒 𝑏𝑢𝑠𝑒𝑠 (8) 

     Where w is a matrix of installed PMU costs or a bus 

weight matrix that may fluctuate based on the significance 

of each bus, and n is the total number of buses in the 

system. It is frequently referred to as the matrix n×n, and 

the following definitions of A and b apply: 

𝐴𝑛×𝑛(𝑖, 𝑗)

= {
1         𝑖 = 𝑗                                          

   1  𝑖𝑓 𝑏𝑢𝑠𝑒𝑠 𝑖 𝑎𝑛𝑑 𝑗 𝑎𝑟𝑒 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑
0            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                           

 
(9) 

𝑥𝑛×1(𝑖) = {
1    𝑖𝑓 𝑃𝑀𝑈 𝑖𝑛𝑠𝑡𝑎𝑙𝑙𝑒𝑑 𝑖𝑛 𝑏𝑢𝑠 𝑖
0           𝑜𝑡ℎ𝑒𝑟                                

 (10) 

𝑏 = [1 1 1 1 1 … 1 1]𝑇
 (11) 

    In equation (1) is used for complete observability of 

the system, and the ith row of the matrix Ax is the number 

of frequency of the observability of the ith bus which should 

be at least one. 

 

5. Simulation and Results 
In this part, we calculate cyber load by first running 

the Section IV optimization problem on the IEEE 14-bus 

system. Then, we use the greedy technique outlined in 

Section III.B to determine the ideal location for encrypted 

PMUs on substations for IEEE 14-bus and IEEE 118-bus 

systems. AC power flow, AC state estimation, and ACOPF 

are all implemented using the MATPOWER package in 

MATLAB. The PMU allocation optimization problem is 

solved via ILP. 

A. consequence of LR attack on IEEE 14-Bus 

In this section, the load redistribution attack is 

implemented on IEEE standard 14-bus system. The system 

has 14 buses, and 20 lines. There are a total of 41 
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measurements in the system. The load deviation limit is set 

at α=20%.

 
Fig. 3. IEEE 14-bus test system diagram 

 

Note that in the load redistribution attack, the output 

measurements of the generators should not be attacked. 

The attacker's goal is to execute a load redistribution attack 

without being detected by the system control center with 

the following assumptions: 

1) The attacker has complete information about 

network topology and network parameter. 

2) The attacker has the ability to change the load and 

flow measurements of the line.

 

Table 1. Attack vector C (voltage angles) to increase the flow of line 12 

vector C Bus No. vector C Bus No. vector C Bus No. 

-0.34 11 0 6 0 1 

0.7 12 0 7 0 2 

0.6 13 0 8 0 3 

1.38 14 0 9 0 4 

  -0.35 10 0 5 

As an example, we consider the target line to be the 

12th (B12) line between the 6th and 12th buses. Assuming 

that bus number 6 is the reference bus. The maximum flow 

change on the line by implementing the LR attack based on 

proposed method is determined to be 2.14 MW. 

Now, based on the amount of load changes and the 

existing relationship between the state vector (voltage angle 

of buses), load changes and system susceptance matrix, the 

value of state vector C (voltage angle of buses) can be 

determined (table 1).

 

Now, based on the attack vector (changes in the bus 

voltage angle) (Table 1) and the bus voltage angle in the 

non-attack mode (Table 2), we get the system voltage angle 

after the attack (Table 3). Figure 4 shows the change in 

measurements after and before the attack.

Table 2. voltage angle 𝑥 without attack 

vector C Bus No. vector C Bus No. vector C Bus No. 

-16.54 11 0 6 -5.53 1 

-17.02 12 -14.75 7 -14.2 2 

-17.06 13 -14.75 8 -11.41 3 

-17.9 14 -16.51 9 -9.76 4 
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  -16.75 10 -16.08 5 

Table 3. voltage angle 𝑥 = 𝑥 + 𝑐 with attack 

vector C Bus No. vector C Bus No. vector C Bus No. 

-16.2 11 0 6 -5.53 1 

-17.72 12 -14.75 7 -14.2 2 

-17.66 13 -14.75 8 -11.41 3 

-19.27 14 -16.51 9 -9.76 4 

  -16.4 10 -16.08 5 

 

Fig. 4. System measurement values before and after the attack 

 

When the attacker finishes designing and 

manipulating the measurements, the new measurement 

data will be entered into the SCADA system and then they 

will be entered into the estimation system section. The state 

estimation system estimates the state vectors and checks 

their residual (r<τ). The output of the state estimation 

system was the state vectors (Table 3) and based on these 

state vectors and the power flow problem, the load values 

(Figure 5) and system generation are determined. Based on 

the consumption load values obtained from the previous 

step, optimal power flow is implemented, which determines 

the optimal amount of generator generation in optimal 

power flow (Figure 6) and these values will be the new 

generation values of generators for the next time frame of 

the system. The point here is that the generation values of 

the generators have been determined based on the 

manipulated cyber load, while in our main system the load 

values were the same as the initial values, so this issue 

disrupts the normal operation of the system and causes 

overflow (Figure 7) is on the lines.

-150

-100

-50

0

50

100

150

200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

z without attack z with attack



           

9 
 

 
Fig. 5. Cyber load values of the system before and after the attack 

 

 
Fig. 6. Generation values of generators based on cyber load obtained from OPF 

 
Fig. 7. Changes in power flow of lines after applying new generation values to the system in the presence of real load 

B. PMU allocation 

We begin by looking at how cyber risk affects the best 

allocation approach. The attacker is assumed to target just 

one PMU in this comparison, and the odds of successful 

compromise are set to 0, 0.01, 0.05, 0.1, and 0.5, 

respectively. Keep in mind that a compromise chance of 0 

indicates that there is no cyber danger, and that other 

probabilities indicate varying degrees of risk (i.e., the larger 

probability, the more risk). Additionally, we consider the 

transmission line's dependability to be 0.99. 
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PMUs are placed using the greedy procedure. Table 4 

presents the best tactics for various levels of cyber risk. If 

there is no cyber risk, it can be shown that an extra 4 PMUs 

are needed, bringing the total number of observables up to 

20. However, if there is a cyber-risk, 3 or more extra PMUs 

are needed to ensure the risk level, and there are more than 

20 observables in all. We see that as the probability is 

compromised, the number of PMUs needed grows. As an 

illustration, as the compromise probability rises from 0 to 

0.5, the number of PMUs needed for the IEEE 14-bus 

increases from 4 to 9. 

It would be interesting to research the effects of 

ignoring cyber threats in real-world situations. We take into 

account the following two PMU deployment possibilities 

from Table 4 and 5 for this purpose.

Table 4. PMU location where 'No.' indicates the total number of additional PMUs. 

Sensitive Buses {6,7,12,13,14} 

Manipulated probability PMU Location No. 

0 {2,7,10,13} 4 

0.01 {2,6,7,11,12,13,14} 7 

0.05 {2,6,7,10,11,12,13,14} 8 

0.1 {1,4,6,7,8,10,11,12,13,14} 9 

0.5 {1,4,6,7,8,10,11,12,13,14} 9 

Table 5. PMU Location where 'No.' indicates the total number of additional PMUs. 

Sensitive Buses {8,12,13,14,19,30,33,38,70,77,80,94,97,98,101} 

Manipulated probability PMU Location No. 

0 

3 5 9 12 15 17 21
 23 29 30 36 40 44
 46 51 54 57 62 64
 71 75 77 80 85 87

 90 94 102 105 110 115 
116 

32 

0.01 

1 5 8 10 12 13 14
 19 21 27 30 31 32
 33 34 36 38 40 45
 49 52 56 62 64 70
 71 77 80 85 87 91

 94 97 98 101 105 110
 116 118 

39 

0.05 

1 5 8 10 12 13 14
 19 22 24 27 28 30
 32 33 34 36 38 40
 45 49 52 56 62 63
 70 73 77 80 85 87

 91 94 

40 

0.1 

1 5 8 10 12 13 14
 19 22 24 27 28 30
 32 33 34 36 38 40
 45 49 52 56 62 63
 70 73 77 80 82 85

 86 90 

43 
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0.5 

1 5 8 10 12 13 14
 19 22 24 27 28 30
 32 33 34 36 38 40
 45 49 52 56 62 63
 70 73 77 80 82 85

 86 90 

43 

 

6. Conclusion 
In this research, we create measures to shield against 

LR assaults. We look into many approaches to see which 

works best for allocating resources. Case studies are 

conducted using a representative IEEE test system. It is 

possible that this research will help provide light on how to 

best spend scarce financial and defensive resources to 

safeguard the electrical grid against possible LR attacks. To 

begin, we borrowed concepts from the field of power 

systems to develop a usable model for the core difficulty of 

LR attacks. The proposed defense mechanism seeks to 

determine which buses have the biggest impact on a 

particular transmission asset by showing that a 

straightforward greedy algorithm can optimally solve this 

model. According to the results, the greedy approach is 

quite fast; finding the global solution only takes a few 

milliseconds (for each transmission asset). Once the PMU-

observable system and sensitive buses have been 

determined, the PMU allocation can be determined. Given 

that different PMU initializations might lead to 

significantly different optimal techniques for assigning 

PMUs, our approach is superior to the heuristic approach. 
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