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Highlights 
 

➢ Simulating compressive strength of Ultra-High-Performance Concrete using eco-friendly constituents. 

➢ Support Vector Regression combined with Marine Predator Algorithm and Grasshopper Optimization Algorithm utilized for  

accurate CS simulation. 

➢ Eight components mixed to generate CS and model them, with R2 values of 90% (SVR-MPA) and 89.77% (SVR-GOA). 

➢ RMSE values of 9.41 MPa (SVR-MPA) and 9.98 MPa (SVR-GOA) obtained for error rate assessment. 

 

Article Info   Abstract 

     Ultra-High-Performance Concrete (UHPC) is a resistant ingredient in projects requiring analysis 
of its composition to appraise the UHPC Compressive Strength (CS). Experimentally, assigning the 
relations between ingredients may require more time, energy, and cost. The intelligent techniques 
evaluate the compressive strength based on the UHPC composition’s ingredients. Selecting 
environmentally-friendly concrete materials seems one of the prevalent methods used worldwide. 
This study suggested a machine learning method for predicting the CS of UHPC including support 
vector regression (SVR). In addition, two meta-heuristic algorithms have been used for improving 
the accuracy of predicting CS containing the Marine Predator Algorithm (MPA) and Grasshopper 
Optimization Algorithm (GOA). In this regard, the experimental samples’ result has been employed 
for validating the prediction from published papers. Furthermore, various metrics were used to 
assess the hybrid modeling performance. As a result, the R2 indicator to model the CS value in the 
calibration stage for SVR-MPA was obtained at 90 % while for SVR-GOA it was 89.77 %, with a 
0.33% difference. Further, for the RMSE index, the SVR-MPA could get an error rate of 9.41 MPa, 
but for SVR-GOA, it was calculated at 9.98 MPa. The comprehensive OBJ index was calculated for 
SVR-GOA 7.43 as an error that is 15.06 % higher than SVR-MPA, showing the capability of SVR-
MPA to overcome errors rather than SVR-GOA. 
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1. Introduction 
The concrete type called Ultra-High-Performance 

(UHPC) is developed for many projects that show excellent 

properties from the compressive behavior viewpoint, 

tensile behavior, and durability compared to typical 

concrete and high-performance concrete (HPC). The 

research programs to feature a lot of actions related to the 

use of UHPC in the highway bridge industry have been done 

 
* Corresponding Author: Tianhua Zhou 

Email: zhoutianhua@chd.edu.cn 

[1]. UHPC, as a great achievement composition, gives us 

acceptable resistance against compressions up to 150 Mega 

Pascal (MPa) and excellent resistance in any harsh 

environment. This material is utilized for various 

mechanisms in diverse structures [2]–[5]. By cutting the 

cement and micro-silica, the costs and emission of CO2 are 

reduced, as well as the useful longer service life and 

properties in comparison with typical or high-strength 
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concrete defined the high short-term cost and positive 

effects on the environment. Regarding this matter, due to 

the cement decline seems to have a key role. It enhances the 

construction industry’s sustainability as an environmental 

efficiency building [6]. 

A few investigations have explored the behavior of 

UHPC and its utilization over a long time [7]. The 

compressive strength of UHPC ordinarily appears to be 

between 150 and 810 MPa [8]–[10]. Added substances such 

as fly ash, nano silicate, metakaolin, and micro-silica have 

drawn researchers’ consideration for utilizing these 

materials to advance concrete blends. It is additionally of 

paramount significance to compare the impact on the 

mechanical properties of the Compressive Strength of 

concrete (CS). This is often because physical properties are 

utilized to assign the different properties of concrete, and 

the concrete situation is fundamentally based on CS [11], 

[12]. 

Admixtures utilizing inhomogeneous concrete of 

pozzolan influence the features of concrete by changing the 

cement base blend within the concrete [13]–[15]. Due to the 

little measure of silica, smolder can handle the double part 

of the filler and pozzolan in the concrete blend [16]. 

Concrete’s short-term (28-day) compressive resistance will 

be enhanced despite an upgrade within the extent of micro-

silica in concrete, which diminishes the workability of 

concrete [17]. The effective extent of silica-fume that has 

the most elevated compressive persistence has not 

continuously been accurately known. Analysts display a 

multi-ratio micro-silica supplant to attain the most extreme 

concrete CS [18], [19]. Since the estimation of particles is 

little compared to cement, the response of silica vapor 

appears like that of pozzolan, which enhances the concrete 

properties [20]–[24]. The utilization of micro-silica for fly 

ash next to the super-plasticizer can decrease porosity and 

lift the CS [25]. 

With a structure similar to Portland cement in shape 

and size, the fly ash component helps to reduce the amount 

of water in concrete production. Mixing optimally, fly ash 

and super-plasticizers improve the mechanical properties 

of concrete, mainly its compressive strength. Additionally, 

additives such as fly ash significantly impact strength, 

usability, concrete cost, and moisture penetration. 

Generally, fly ash is used to replace sticky substances. On 

the other hand, the use of fly ash in concrete mixtures 

positively affects the environment by reducing the risk of 

contamination [26]–[28]. The amount of fly ash 

replacement is about 20-50% of the total adhesive strength 

of concrete, and when the initial strength of concrete is the 

main factor, the amount of fly ash can increase up to 60% 

[29], [30]. 

Clever strategies like machine learning have had broad 

usage within the academic research fields. Specialists 

utilize these arrangements to gauge particular properties 

[31]–[33]. The presence of UHPC needs to encourage 

progress in artificial intelligence (AI) usage to decide the 

behavior of concrete beneath loads. Analysts in numerous 

examinations have effectively executed different strategies 

to recreate UHPC execution [34]–[36]. Even though these 

strategies demand information sets to construct vigorous 

models, the precision of outcomes relies on the species 

captured through the exploratory exertion or information 

sets acquired from authentic experiments. Research 

worked on the programming of gene expression calculation 

to assess the CS of concrete, including sugarcane ash 

remains [37]. In any case, model precision was calculated 

by comparing experimental quality estimations with model 

outputs. Another study created a model utilizing genetic 

programming to assess the compressive resistance of 

cement composed of micro-silica and nano-silica [38]. One 

article proposed a model that used an artificial neural 

network and optimized the model using a grey wolf 

optimization to predict the CS of micro-silica containing 

concrete and reduce the model's sophisticated, time, and 

energy supply [39]. 

By utilizing appropriate models, it is possible to obtain 

favorable results through the identification of optimal input 

combinations. Such an approach not only enables the 

realization of meaningful outcomes but also facilitates 

significant savings in terms of both time and financial 

resources. Empirical and statistical models, such as linear 

and nonlinear regression, have been extensively utilized in 

various fields of research [40], [41]. Nevertheless, the 

development of such models necessitates labor-intensive 

experimental undertakings and may generate imprecise 

outcomes in instances where the interdependencies 

between specific material attributes and the varying 

compositions and curing circumstances of the mixture are 

multifarious. Machine learning (ML) can be characterized 

as a subcategory of AI wherein an entity is capable of 

acquiring knowledge autonomously via algorithms [42]. 

This approach to learning involves leveraging datasets and 

past experiences to enhance overall performance, thereby 

enabling the entity to continually improve and refine its 

outputs. With minimal human involvement, machine 

learning algorithms exhibit the ability to learn 

autonomously and enhance their performance gradually 

over time [43]. ML has gained widespread adoption in the 

field of engineering as a versatile tool for the resolution of a 

range of issues. Examples include outage prediction, 

angular velocity estimation, component failure prognostics, 

and fatigue life prediction. The utilization of AI and ML has 
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been a prevalent approach in addressing obstacles 

encountered in diverse areas of structural engineering 

within the realm of civil engineering. The utilization of 

machine learning (ML) applications extends to the 

development of structural design and performance 

assessment, refinement of finite element modeling of 

structures, as well as enhancement of prediction and 

evaluation of concrete properties [44]–[46]. 

The aim of this study is used the machine learning 

method include Support Vector Regression (SVR) to 

predict the CS of UHPC output based on the experimental 

dataset. In addition, two meta-heuristic algorithms for 

optimizing have been used to solve the complex problem 

more accurately by determining key variables embedded in 

SVR containing Marine Predator Algorithm (MPA) and 

Grasshopper Optimization Algorithm (GOA). Moreover, 

several indices such as MAE, R2, RMSE, OBJ, and VAF 

were used to assess the process of modeling. Therefore, the 

SVR-GOA and SVR-MPA frameworks aim to evaluate the 

concrete persistence samples for training models developed 

using sample data from a mixture of UHPC and CS target 

values. 

2. Materials and Methodology 
To evaluate the compressive strength of UHPC, the 

evaluation of the model developed in this study is defined 

as one of the main objectives. Indeed, robust SVR models 

attempt to simulate CS values, which can help optimizers 

improve the quality of model results. Simultaneously, data 

sets must be processed, which is crucial for achieving that 

objective. Utilizing the GOA and MPA algorithms, the SVR 

finds the best solution for calculating the variables 

designated into the SVR, allowing the SVR-GOA and SVR-

MPA to estimate CS close to the target measure. Therefore, 

providing a core data set for a feeding model that needs 

accurate measurements is necessary. With this regard, CS 

data sets for UHPC were collected from various 

experimental studies involving the same components [2], 

[52]–[54], [56]–[63]. In this regard, Fig. 1 has shown the 

ingredients dataset used to define and train the models plus 

the histograms of data frequency and normal distribution 

curve. 

 

 
Fig1. The dataset used to define and train the models

Data gathered from 110 UHPC samples in the 

experiment are brought in briefly in Table 1. However, the 

information on components in the different magnitudes of 

UHPC samples may result in various CS in each sample. 
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UHPC Resistance modeling is performed by the 

mathematic strategies introduced in the following sections. 

Notably, all data are used for modeling in two phases: 

calibration (training) and validation (testing). 70 percent of 

data are considered for training and 30 percent for the 

testing stage. 

 
Table 1. Input and target data for predictive models 

 
2.1. Marine Predator Algorithm (MPA) 

 
The Marine Predators Algorithm (MPA) is the novel 

natural metaheuristic algorithm presented by Faramarzi et 

al. [64]. In the natural interaction among marine predators 

and prey, the predators employ a widely accepted foraging 

strategy named Brown and Levy random migration, 

inspired by the MPA. If the focus of prey in the hunting 

ground is high, the predator uses the Brown method, and if 

the prey is small, the Levy method is used. The Levy 

movement includes the shortened steps obeyed by jumps 

enhancing the process of exploration. However, the 

Brownian movement contains steps fixed in the same job 

for optimizing the exploitation process. Whereas matters of 

the environment such as fish aggregating devices (FADs) 

and eddy formation impacts are among the items that alter 

the predators’ behavior. Fig. (2) shows the schematic view 

of the MPA mechanism [65]. The mathematical 

formulation of the MPA algorithm is as follows.

 

 
Fig 2. The biological interaction of marine predators and prey 

 

The main stages of the MPA solution are explained as 

follows [51]:  

The preys move with the Brownian motion, upgrading 

the matrices of Prey in Eq (1) and Eq (2): 

Component Unit Code Statistical measurements 

   Min Max Mean Median St. dev 

Cement (Kg/m3) CE 383 1600 879.7 786 329.8 

Fly ash (Kg/m3) FA 120 448 33 120 72.7 

Sand (Kg/m3) SA 292 1898 980 1107 513.8 

Steel fiber (Kg/m3) SF 2 470 39 8 74.8 

Quartz powder (Kg/m3) QP 203.3 750 36.9 211 125.9 

Compressive strength (MPa) CS 95 240 152.2 147.9 31.5 

Admixture (Kg/m3) AD 4 185 31.9 30.1 28.2 

Silica fume (Kg/m3) SI 30 367.95 192 196 94.6 

Water (Kg/m3) WA 109 334.5 197.1 185.3 54.3 
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𝑠𝑡𝑒𝑝𝑗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = 𝑅𝐿
⃗⃗ ⃗⃗ ⊗ [𝑒𝑙𝑖𝑡𝑒𝑗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  − (𝑅𝐿

⃗⃗ ⃗⃗ ⊗ 𝑝𝑟𝑒𝑦𝑗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)]  (1) 

𝑝𝑟𝑒𝑦𝑗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝑝𝑟𝑒𝑦𝑗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ + (𝑃. 𝑅⃗ ⊗ 𝑠𝑡𝑒𝑝𝑗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  )   (2) 

 

Wherein RL denotes a vector including accidental 

numbers based on the levy’s movement. While the other 

half of the population is upgraded in Eq (3): 

𝑠𝑡𝑒𝑝𝑗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = 𝑅𝐵
⃗⃗⃗⃗  ⃗ ⊗ ((𝑅𝐵

⃗⃗⃗⃗  ⃗ ⊗ 𝑒𝑙𝑖𝑡𝑒𝑗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ) − 𝑝𝑟𝑒𝑦𝑗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗) (3) 

𝑝𝑟𝑒𝑦𝑗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝑒𝑙𝑖𝑡𝑒𝑗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  + (𝑃. 𝑐𝑓 ⊗ 𝑠𝑡𝑒𝑝𝑗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  )   (4) 

 

In which the matrix elite is assumed to multiply by 𝑐𝑓. 

Eq. (5) defines the 𝑐𝑓. 

𝑐𝑓 = [1 − (𝑖𝑡𝑒𝑟/𝑚𝑎𝑥 × 𝑖𝑡𝑒𝑟)](2.𝑖𝑡𝑒𝑟/𝑚𝑎𝑥 × 𝑖𝑡𝑒𝑟) (5) 

The predators move using Levy movement, and the 

matrix of prey is upgraded Eq. (6) and (7): 

𝑠𝑡𝑒𝑝𝑗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = 𝑅𝐿
⃗⃗ ⃗⃗ ⊗ ((𝑅𝐿

⃗⃗ ⃗⃗ ⊗ 𝑒𝑙𝑖𝑡𝑒𝑗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ) − 𝑝𝑟𝑒𝑦𝑗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)  (6) 

𝑝𝑟𝑒𝑦𝑗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝑒𝑙𝑖𝑡𝑒𝑗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  + (𝑃. 𝑐𝑓 ⊗ 𝑠𝑡𝑒𝑝𝑗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ) (7) 

 After each iteration, the matrix elite is upgraded with 

the best answers, and the final one will be introduced after 

the last iteration. 

 
2.2. Grasshopper optimization algorithm 

(GOA) 

Grasshopper optimization algorithm (GOA) as the 

swarm basis method simulates the behavior of the insect 

type of grasshopper in achieving the best answer [66]. 

Grasshoppers show the behavior of a swarm basis to move 

along the distance with two features of sudden movement 

and a long way. The mathematical behavior of grasshoppers 

is defined in Eq (8). 

𝑥𝑖 = 𝑆𝑖 + 𝐺𝑖 + 𝐴𝑖  (8) 

Wherein, 𝑥𝑖 shows the location of grasshopper 𝑖 and 𝑆𝑖 

denotes the hereditary interaction of grasshoppers. 

Si = ∑s(dij)d̂ij

N

j=1
i≠j

  ,        dij = |xi − xj|   

 ,   d̂ij =
xi − xj

dij
      

(9) 

The parameter of 𝑑𝑖𝑗  denotes the area among the 

grasshoppers of 𝑖 and 𝑗; 𝑑̂𝑖𝑗  is the unit vector between the 

grasshoppers 𝑖 and 𝑗; Also, 𝑠 represents the power of the 

group force. 

𝑠(𝑥) = 𝑓𝑒
−𝑥
𝑙 − 𝑒−𝑥  (10) 

 

Wherein, 𝑓 and 𝑙 denote the intensity of attraction and 

length, alternatively. The Nymph type grasshopper does 

not have wings, so the wind orientation is the crucial factor 

of insect motion. 
Ai = uêw ,   Gi = −gêg                 (11) 

 
In which the parameters of 𝐺𝑖 and 𝐴𝑖 represent the 

gravity and advection of wind for the grasshopper𝑖. The 
variable of 𝑒̂𝑔 represents the unit vector that defines the 

direction of wind advection and the parameter of 𝑒̂𝑤 shows 

the gravity orientation strength. Moreover, 𝑢 denotes the 

constant of wind drift, and 𝑔 mentions the gravity-fixed 

number. In this regard, Eq. (8) is regarded as Eq. (12): 

 

Xj
d = c

[
 
 
 
 

∑c
ubd − lbd

2
s(|xi

d − xj
d|)

xi − xj

dij

N

j=1
i≠j ]

 
 
 
 

    + D̂d            (12) 

 
Wherein the parameters of 𝑢𝑏𝑑 and 𝑙𝑏𝑑 are the up and 

low boundaries, 𝐷̂𝑑 exhibits the dimension value of 𝑑, and 

the variable of 𝑁 denotes the population number. 

Moreover, 𝑐 shows the decrescent coefficient that is 

reduced with increasing the iterations to assist in balancing 

the operations of exploitation and exploration. This 

parameter enhances the exploitation as the iteration 

number is gone up. 

c = cmax − Iter ×
cmax−cmin

M.Iter
          {

cmax = 1
cmin =  0.0001

 (13) 

 

2.3. Support Vector Regression, SVR 

In this study, the SVR method (Support vector 

regression) method for classification regression issues was 

used [67]. SVR chooses an error region of ε to determine a 

regression model. It is noteworthy that categorization of the 

regression class can be performed to determine the specific 

bounds of the hyper plane. The SVR used in this study is 

regarded as a controlled method for determining the 

response to a regression process that develops the 

properties of the equation (14) [68]. 

 

𝑚𝑖𝑛𝑤,𝑏 =
1

2
‖𝑤‖2 + 𝐶 ∑ (𝜉𝑖 + 𝜉𝑖

∗),       
𝑚

𝑖=1
 

𝑐𝑜𝑛𝑠𝑡.  {

𝑦𝑖 − (𝑤𝑇𝑥𝑖 + 𝑏) ≤ 𝜀 + 𝜉𝑖

(𝑤𝑇𝑥𝑖 + 𝑏) − 𝑦𝑖 ≤ 𝜀 + 𝜉𝑖
∗

𝜉𝑖 , 𝜉𝑖
∗ ≥ 0

} 

(14) 
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In Eq. (14), the variable of 𝑦 denotes the CS 

measurements; the boundary violation is determined by 𝜉 

denotes; row regularizing is ascertained by 𝐶; the weight 

item is determined by 𝑤; 𝑏 also shows the SVR bias; 

Further, the 𝜀 variable is the deviation magnitude of the 

boundary style of the hyper plane. Two terms written in Eq. 

(14) are analyzed in relations (15) and (16): 

 
1

2
 ‖𝑤‖2)  (15) 

𝐶 ∑ (𝜉𝑖 + 𝜉𝑖
∗)

𝑚

𝑖=1
 (16) 

The term of  
1

2
 ‖𝑤‖2 was brought in for increasing the 

area between the samples and boundary hyperplane to have 

the area from the samples to the boundaries. Moreover, the 

next term of relation (16) has worked as the adjuster tool. 

When developing operators to target the hyperplane 

boundary, collecting the values of 𝑏 and 𝑤 is required. A 

quadratic objective function is developed in current 

research, reaching the desired results to assign parameters 

(𝐶, 𝜀, and 𝑠𝑖𝑔𝑚𝑎) of SVR at the optimal levels [69]. Table 2 

shows the abovementioned parameters calculated using 

optimization algorithms.
 

Table 2. The SVR key variables’ values optimized 

  SVR-MPA SVR-AGO 

Training phase 

C 1.121 2.329 

EPSILON 1200 620 

𝑠𝑖𝑔𝑚𝑎 0.01 0.1 

Testing Phase 

C 1.964 1.150 

EPSILON 1200 1200 

𝑠𝑖𝑔𝑚𝑎 1.100 1.288 

 

In addition, Optimizers and Support Vector 

Regression (SVR) are two different concepts in machine 

learning. Optimizers are algorithms used to train a model 

by adjusting its parameters to minimize a loss function, 

while SVR is a type of regression algorithm used for 

predicting continuous values. However, it is possible to 

combine these two concepts to improve the performance of 

a machine learning model. One way to do this is to use the 

optimizer to tune the hyperparameters of the SVR model. 

Hyperparameters are parameters that are not learned 

during training but are set before training begins and affect 

the behavior of the model. For example, in SVR, the 

hyperparameters include the kernel function, the penalty 

parameter C, and the parameter epsilon. The kernel 

function determines the shape of the decision boundary 

used to make predictions, while the penalty parameter C 

and epsilon control the trade-off between the complexity of 

the model and its ability to fit the training data. By using an 

optimizer to tune these hyperparameters, it is possible to 

find the optimal values that improve the performance of the 

SVR model. This can be done by defining a loss function 

that measures the difference between the predicted values 

and the actual values and using an optimizer to minimize 

this loss function. Overall, the combination of optimizers 

and SVR can be a powerful tool for improving the 

performance of regression models and enabling 

researchers to develop more accurate and effective machine 

learning systems. 

 

2.4. Evaluating criteria for models SVR-MPA 
and SVR-GOA  

In order to evaluate the models’ effectiveness that 

wants to produce the compressive strength (CS) values of 

UHPC specimens for the calibration and validation phases, 

diverse indices are elaborated in Table 3 

 

 

.

Table 3. Evaluation criteria to assess developed models 

Evaluation 
criteria 

Nomenclature Relations Assessment 

Variance account 
factor 

𝑉𝐴𝐹 (1 −
𝑣𝑎𝑟(𝑡𝑛−𝑦𝑛)

𝑣𝑎𝑟(𝑡𝑛)
) ∗ 100  (17) 

Higher is 
desirable 

Mean absolute 
error 

MAE 
1

𝑁
∑ |𝑝𝑛 − 𝑡𝑛|𝑁

𝑛=1    (18) Lower is desirable 

Root mean 
squared error 

RMSE √
1

𝑁
∑ (𝑝𝑛 − 𝑡𝑛)2𝑁

𝑛=1   (19) Lower is desirable 
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Pearson’s 
correlation 
coefficient 

R2 (
∑ (𝑡𝑛−𝑡̅)(𝑝𝑛−𝑝̅)𝑁

𝑛=1

√[∑ (𝑡𝑛−𝑝̅)2𝑁
𝑛=1 ][∑ (𝑝𝑛−𝑝̅)2𝑁

𝑛=1 ]

)2 (20) Higher is 
desirable 

Statistical 
parameters, 
including the 
various error 

indices 

OBJ 
(
𝑛𝑡𝑟𝑎𝑖𝑛−𝑛𝑡𝑒𝑠𝑡

𝑛𝑡𝑟𝑎𝑖𝑛+𝑛𝑡𝑒𝑠𝑡
)

𝑅𝑀𝑆𝐸𝑡𝑟𝑎𝑖𝑛+𝑀𝐴𝐸𝑡𝑒𝑠𝑡

𝑅𝑡𝑟𝑎𝑖𝑛
2 +1

+

(
2𝑛𝑡𝑟𝑎𝑖𝑛

𝑛𝑡𝑟𝑎𝑖𝑛+𝑛𝑡𝑒𝑠𝑡
)

𝑅𝑀𝑆𝐸𝑡𝑒𝑠𝑡−𝑀𝐴𝐸𝑡𝑒𝑠𝑡

𝑅𝑡𝑒𝑠𝑡
2 +1

      (21) 

Lower is desirable 
[70] 

The metrics of the relations (17) - (21), the estimated 

compressive strength of samples UHPC is denoted via 𝑝𝑁; 

𝑡𝑛 indicates CSs as measured target values; the 𝑡̅ shows the 

averaged measurements of CS samples; 𝑝̅ represents the 

averaged estimated CSs. Further, the ntrain and ntest 

indicate the number of samples collected for the calibration 

and validation phases, respectively. 

 

3. Results and Discussion 
The frameworks SVR-MPA and SVR-GOA were 

modeled, and the Compressive Strength (CS) of Ultra-

High-Performance Concrete (UHPC) rates was generated 

based on the feeding data collected from the experimental 

research. Different ingredients were composed to create the 

samples considering 70 percent of the dataset for the 

training phase and the remaining for the validation 

(testing) phase. Five indices (as elaborated in Table 3) 

examined the outcomes with the target values to assess the 

proposed models’ performance. The present study employs 

a methodology for the integration of the radial basis 

function (RBF) model with optimization techniques. This 

methodology leverages optimization techniques to 

ascertain the number of neurons and spread rate in the RBF 

network. The network structure parameters, exclusive of 

the activation function, were deemed optimization 

variables, with the radial basis function (RBF) serving as 

the cost function. In each iteration of the optimization 

process, the optimizers ascertained the variables, which 

were subsequently supplied as input to the cost function. 

The Root Mean Square Error (RMSE) was utilized to assess 

the cost rate in comparison with other cost rates and 

determine the minimum RMSE across a spectrum of 

iterations. The optimal configuration of the RBF network 

was determined by identifying the values of the variables 

that correspond to the minimum RMSE. To promote 

equitable comparison between the two hybrid models, a 

consistent number of iterations was employed along with 

an identical domain of variables. Consequently, Table 4 

indicates the various metrics assessing the resultants of CS 

that are generated from the proposed models. Supposedly, 

the SVR-MPA was rated by the R2 index in two phases, and 

in the training phase, it was calculated 90% which is 0.33% 

higher than SVR-GOA. Moreover, the R2 of SVR-MPA was 

obtained at 95% for the testing phase, which is 3.04% 

higher than SVR-GOA.

 
Table 4. The CS assessing using various metrics 

 SVR-MPA SVR-GOA Average 

Criteria used 

Training step 

2R 0.901 0.898 0.899 

RMSE 9.988 10.173 10.08 

MAE 3.885 4.845 4.365 

VAF 91.159 91.643 91.401 

Testing step 

2R 0.946 0.918 0.932 

RMSE 7.91 9.53 8.72 

MAE 3.564 4.1 3.832 

VAF 95.377 93.137 94.257 

OBJ 6.458 7.43 6.944 

The error indicator of RMSE also assessed the models 

that the MAP optimizer could get the error of 9.988 MPa in 

the validation stage, and the GOA algorithm achieved the 

10.173 MPa, with a difference of 1.86%. The index of MAE 

also ranked the SVR-MPA and SVR-GOA in the training 

phase, at 3.885 MPa and 4.845 MPa, with a difference of 

24.72%. For the VAF index, the MPA method could rate the 

relevant model at the level of 95.38, with a 2.41% highness 
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compared to SVR-GOA. The comprehensive assessment 

done by the OBJ index included all of the mentioned 

correlation and error indices (except for VAF). With this 

respect, in the validation phase, SVR-GOA was examined 

with this indicator at the rate of 7.42, which is 15.06% 

higher than SVR-MPA, with a value of 4.46. 

Focusing on error distribution will help us better 

understand the modeling process for either of the 

frameworks. Regarding this matter, Fig. 2 shows the 

capability of each model to have errors concentrated 

around the zero rates. As shown in Fig. 3, the error 

histograms of SVR-MPA exhibit its appropriate 

distribution to make such tall bars around the zero point. 

Therefore, the normal distribution curve is formed as 

narrower-shaped rather than SVR-GOA’s. While the 

histogram of this model’s error is distributed non-

uniformly, it has created the flattened curve of error normal 

distribution. 

Considering the modeled results of CS for both 

models, Fig. 4 draws the observed rates against the 

estimated ones over the plots, including the best-fit line and 

the bisector of y=x. The SVR-MPA (a) could model the 

compressive strength values of samples close to SVR-GOA 

as the slope of the best-fit line has similar values of 0.85 and 

0.84 for (a) and (b). However, the MPA appears to show 

better performance, leading to a more suitable distribution 

of CS points than GOA with exceeding points around the 

bisector line. However, the performance of each model is 

deserved to have an acceptable simulation quality. 

 

 

 

 
Fig3. The error normal distribution curve and error histograms 

 
Fig4. Models’ best-fit line for modeled and measured CSs for: a) SVR-MPA and b) SVR-GOA 

 

 

Fig. 5 shows each sample’s error computed in the 

modeling stage. In this regard, SVR-MPA (a) has modeled 

the CS based on ingredients entered to model with some 

cases in which there are overestimation and 

underestimation. This model has had five positions 
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exceeding the target values up to ±30% for the training 

phase. While for the validation stage, this range is reduced 

to -20% for the sample with several 100 with a -21.34% 

error as underestimated. On the other hand, for the SVR-

GOA in the training phase, the errors are more than another 

model with error rates higher than ±10%. However, in the 

testing phase, the fluctuations of errors relative to the 

testing stage are reduced and the highest rate error is for 

the sample 100 with -26.23%, which is 23%, which is higher 

than the error calculated by the MPA optimizer.

 

 
Fig 5. Error calculated for each sample with the CS modeled by: a) SVR-MPA and b) SVR-GOA 

 

For comparing the difference of the CS calculated from 

both methods, Fig. 6 shows the discrepancy percentage for 

each of the samples. In fact, by dividing the CS modeled 

with SVR-GOA by SVR-MPA, this figure tries to draw a 

picture of the results of different calculation processes of 

two optimizers, MPA and GOA. Based on Fig. 6, there are 

many situations in which models have calculated CS 

differently from each other. In this regard, the sample of 

11th with 5.62%, 17th with 18.38, 56th with 9.35%, and 99th 

with 6.21% difference are the remarkable values with 

higher differences in calculating the CS. 
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Fig 6. Differences of CS modeled by SVR-GOA/SVR-MPA 

 

4. Conclusion 
The concrete type called Ultra-High-Performance 

(UHPC) is developed for many projects that show excellent 

properties from the compressive behavior viewpoint and 

the tensile behavior and durability compared to typical 

concrete and high-performance concrete (HPC). This 

solution provides acceptable resistance against 

compressions up to 150 Mega Pascal (MPa) and excellent 

resistance in any harsh environment. By cutting the cement 

and micro-silica, the costs and emission of CO2 are 

reduced, further bringing the effective longer service life 

and properties compared to typical or high-strength 

concrete showing the high short-term cost and positive 

effects on the environment. This study attempts to simulate 

the UHPC samples’ compressive strength, including 

environmentally friendly ingredients. For this reason, 

Support Vector Regression (SVR), a machine learning 

technique accompanied by the Marine Predator Algorithm 

(MPA) and Grasshopper Optimization Algorithm (GOA), 

was opted to model the Compressive Strength (CS) of 

UHPC. Eight items (introduced in Table 1) were mixed to 

create samples.  

The SVR-MPA with R2 of 91.55% that modeled the CS 

rates more desirable than SVR-GOA could be better by 

being 1.25% more in terms of correlation factor this fact is 

clear in Fig. 4. For RMSE, SVR-GOA simulated the CSs with 

the error rate of 9.984 MPa while SVR-MPA conducted the 

job well with the RMSE of 6.08 percent lower than SVR-

GOA. In the testing stage, either framework modeled the CS 

values in appropriate conditions that SVR-MPA reached 

the RMSE of 7.91 MPa, and for SVR-GOA, this was 9.53 

MPa with a difference of 20.49%. The indicator of VAF also 

indicated the outcomes of both models close to one another. 

Based on VAF, The SVR-MPA outperformed appropriate 

than SVR-GOA with a difference of 0.53% in the training 

phase, while for validation, the difference was 2.41% 

percent in favor of the SVR-MPA with the values of 91.159 

and 95.376 for training and testing phases, respectively. 

The comprehensive assessment done by the OBJ index 

included all of the mentioned correlation and error indices 

(except for VAF). With this respect, in the validation phase, 

SVR-GOA was examined with this indicator at the rate of 

7.42, which is 15.06% higher than SVR-MPA, with a value 

of 4.46. Consequently, despite both frameworks modeling 

precisely at the acceptable range, the MPA optimizer could 

remove the errors well compared to the GOA algorithm, 

which is definitely seen in Fig. 3, which implies the 

concentration of errors adjacent to the zero point. 
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