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Highlights 
 

➢ Investigation of vibration behavior of graphene nanosheets under axial motion for sensor design. 

➢ Modified couple stress theory and Kirchhoff's nonlinear plate model used to analyze nanosheet behavior. 

➢ Hamilton's principle employed to derive nonlinear equations, solved using Galerkin method. 

➢ Small size parameter increases critical speed and oscillation frequency of nanosheet system. 

➢ Study concludes that nanosheet motion exhibits chaotic instability, relevant for nanostructure applications. 

 

Article Info   Abstract 

Based on the potential applications of graphene nanosheets as super-sensitive sensors, this paper 
examines the vibrations of graphene nanoplates under the influence of axial motion. For this 
purpose, Kirchhoff's nonlinear plate model will be used in conjunction with the modified couple 
stress theory (MCST). Using Hamilton's principle, nonlinear equations governing motion are 
extracted and then discretized using the Galerkin method. Based on the numerical method, the 
dynamic response and vibration characteristics of these systems are determined. According to our 
results, the small size parameter increases the critical speed of the system. The first non-
dimensional critical speed of the system at 0, 1.2, and 1.8 is approximately 3.14, 3.18, and 3.42, 
respectively. A small size parameter also increases the system's oscillation frequency. It is 
unnecessary to apply the modified stress coupling theory to nanosheets with thicker thicknesses (h 
> 1.25l) since the effect of the size scale parameter increases with decreasing thickness. In contrast, 
the frequency increases significantly for thinner nanosheets. Due to the nonlinear behavior of these 
systems, the instability of the motion of the system can be attributed to chaotic behavior based on 
the study of the dynamic response. Graphene nanosheets and other plate-like nanostructures may 
be identified based on the results presented here. 
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1. Introduction 
Recent advances in nanotechnology and the 

widespread use of structures with small dimensions in 

engineering applications, particularly in the field of 

mechanical and electrical engineering have led to an 

increased interest in analyzing and understanding the 

behavior of microstructures. The use of nanostructures in 

measurement systems as sensors is one of the most 

important applications of nanostructures. Additionally, 

these structures can be used to accurately measure the 
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dynamic properties of axially moving systems. Systems of 

this type may be subject to a variety of phenomena, 

including resonance, static instability, flutter instability, 

and maximum vibration amplitudes depending on the axial 

velocity. As a result, mathematical modeling of these 

systems is very important to determine their dynamic 

behavior. 

 As a result of the fact that classical theories cannot 

accurately calculate the vibration behavior of 

nanostructures, nanostructures behavior must be studied 
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using these non-classical theories. The non-local theory [1], 

strain theory [2], CST [3], and MCST [4] are common and 

applied non-classical theories. Shaat et al. [5] suggested a 

size-dependent model based on non-local MCST. Wang et 

al. [6] examined the simultaneous effects of electrical fields 

and small dimensions on the stretching instability of 

rectangular nanosheets regardless of geometric 

nonlinearities. It was found that the couple stress 

components did not affect the shape of the nanosheet 

modes in any way. Couple stress theory has been widely 

used to analyze the behavior of nanostructures. By the 

modified couple-stress theory (MCST), Murmu and Shafiei 

et al. [7] considered the vibration response of single and 

multilayered graphene sheets. They discovered the classical 

plate theory frequency is significantly higher than the 

nonlocal theory frequency for nanoplates. A nonlocal 

continuum plate model based on single-layered graphene 

sheets for free vibration analysis was proposed by Zhang et 

al. [8]. According to the classical plate theory, the molecular 

dynamic simulations and the nonlocal model for each 

boundary condition are consistent. The effect of the scale 

parameter on the buckling of quadrilateral nanoplates has 

been studied by Ajri et al. [9]. Kiani [10] used nonlocal 

continuum theory to study the scale parameter of moving 

nanoparticles subject to Coulomb friction on thin 

nanoplates. Dynamic responses were investigated based on 

small-scale parameters, the velocity of moving 

nanoparticles, and dynamic amplitude factors (DAF) of the 

transverse and in-plane displacements. An analysis of 

nanomechanical sensor vibration was carried out by Shen 

et al. [11] using a nonlocal plate theory that incorporates 

size effects. Their model allows a nanoparticle with a 

concentrated micromass to be placed anywhere on a 

rectangular nanoplate. According to the study, the results 

tend to be consistent with the classical model without the 

nonlocal parameter. Thai et al. [12] conducted a static 

analysis of micro/nanoscale plates using a mesh-free 

model. They also applied various boundary conditions 

utilizing the penalty method. 

With the propagator matrix method, Guo et al. [13] 

developed 3D analytical answers to investigated the 

vibrations of a multilayered composite simply supported 

nanoplate. According to Shahraki et al. [14], vibration 

characteristics of nth order rectangular nanoplates are 

studied using modified couple stress theory. Lin [15] 

examined the instability and vibration behavior of axially 

moving plates and expected the instability speed by the 

linear plate theory. A vibration analysis of axially moving 

functionally graded nanoplates in a hygrothermal 

environment has been presented by Zhu et al. [16]. A 

theoretical description of the nanoplate is provided using 

Kirchhoff plate theory and the concept of a physical neutral 

layer. In a recent study, Esmaeilzadeh and Kadkhodayan 

[17] examined the vibrations of axially moving sandwich 

nanoplates reinforced with graphene platelets. The results 

demonstrate that nonlocality and strain gradient 

parameters play a greater role in dynamic deflections as the 

nanoplate velocity increases. 

There has been some research on axially moving 

graphene nanosheets using nonlocal first-order shear 

deformation theory, but there has been no work on free 

dynamic and instability analysis. Based on the authors' 

knowledge, the authors present for the first time a dynamic 

analysis of axially moving graphene nanosheets. 

Accordingly, the nonlinear equations governing motion are 

derived utilizing the modified couple stress theory and 

Kirchhoff's nonlinear plate model. The equations are 

discretized using Galerkin methods. The dynamic response 

and vibration characteristics of these systems are 

determined through the simultaneous numerical solution 

of these equations. 

2. Extraction of motion equations 
Figure 1 illustrates a schematic of an axially moving 

graphene nanosheets. The graphene nanosheets is assumed 

to move in the longitudinal direction with a constant axial 

velocity at the boundary conditions of simple abutments. 

The length, cross-sectional area, and moment of inertia are 

represented by L, A, and I, respectively. In addition, the 

thickness of the sheet is also equal to h.
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Fig. 1. Axially moving graphene nanosheets with simply supported boundary condition 

 

Modified couple stress theory also includes symmetric 

curvature tensor in strain energy along with strain tensor. 

Hence, in the small deformation of linear elastic material, 

the strain energy is obtained as follows [14]: 

𝑈 = ∫
1

2
[𝜎𝑖𝑗휀𝑖𝑗: 𝑚𝑖𝑗𝜒𝑖𝑗]𝑑𝑉 (1) 

𝜎𝑖𝑗 = 𝜆휀𝑖𝑗 + 2𝜇휀𝑖𝑗 (2) 

휀𝑖𝑗 =
1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖) (3) 

𝑚𝑖𝑗 = 2𝜇ℓ2𝜒𝑖𝑗  (4) 

𝜒𝑖𝑗 =
1

2
(𝜃𝑖,𝑗 + 𝜃𝑗,𝑖) (5) 

in which u is the displacement vector, θ is the rotation 

vector, and ℓ is the scale parameter. Also, λ and µ are the 

Lame's constants. It should be noted that the relationship 

between the components of the rotation vector θ and the 

components of the displacement vector u is as follows: 

𝜃𝑖 =
1

2
𝑒𝑖𝑗𝑘𝑢𝑘,𝑗 (6) 

According to Kirchhoff's theory of plates, the 

displacement field of an arbitrary point of the nanosheet in 

the Cartesian coordinate system is as follows: 

 

𝑢1(𝑥, 𝑦, 𝑧, 𝑡) = −𝑧𝑤,𝑥(𝑥, 𝑦, 𝑡) + 𝑢(𝑥, 𝑦, 𝑡) 

𝑢2(𝑥, 𝑦, 𝑧, 𝑡) = −𝑧𝑤,𝑦(𝑥, 𝑦, 𝑡) + 𝑣(𝑥, 𝑦, 𝑡) 

𝑢3(𝑥, 𝑦, 𝑧, 𝑡) = 𝑤(𝑥, 𝑦, 𝑡) 

(7) 

where (𝑢, 𝑣, 𝑤) represents the displacement field 

components of an arbitrary point located on the middle 

surface of the nanosplate, respectively in the x-, y-, and z-

directions. Considering the large geometric deformations, 

the strain-displacement relationship according to von 

Kármán theory is as follows: 

{

휀𝑥
휀𝑦
𝛾𝑥𝑦
} = {

𝑢,𝑥 + 0.5𝑤,𝑥
2

𝑣,𝑦 + 0.5𝑤,𝑦
2

𝑢,𝑦 + 𝑢,𝑥 + 𝑤,𝑥𝑤,𝑦

} − 𝑧 {

𝑤,𝑥𝑥
𝑤,𝑦𝑦
2𝑤,𝑥𝑦

} (8) 

Also, the non-zero components of the curvature tensor 

are obtained based on Eq. (5) as follows: 

 

{
 
 

 
 
𝜒𝑥
𝜒𝑦
𝜒𝑥𝑦
𝜒𝑥𝑧
𝜒𝑦𝑧}

 
 

 
 

=

{
 
 
 

 
 
 

𝑤,𝑥𝑦
−𝑤,𝑥𝑦

−
1

2
(𝑤,𝑥𝑥 − 𝑤,𝑦𝑦)

−
1

4
(𝑢,𝑥𝑦 − 𝑣,𝑥𝑥)

−
1

4
(𝑢,𝑦𝑦 − 𝑣,𝑥𝑦)}

 
 
 

 
 
 

 (9) 

To develop the motion equations, we use the Hamilton 

principle. Based on this principle we will have: 

𝛿 ∫ (𝑈 + 𝑇 −𝑊𝑒𝑥𝑡)𝑑𝑡
𝑡

0

= 0 (10) 

where U is the strain energy, T stands kinetic energy 

and 𝑊𝑒𝑥𝑡  stands the work done by external forces. 

Based on the MCST, the strain energy of thin 

nanosheet is calculated as follows: 

 

𝑈 =
1

2
∫(

𝜎𝑥𝑥휀𝑥𝑥 + 𝜏𝑥𝑦𝛾𝑥𝑦 + 𝜎𝑦𝑦휀𝑦𝑦 +𝑚𝑥𝑥𝜒𝑥𝑥
+2𝑚𝑥𝑧𝜒𝑥𝑧 + 2𝑚𝑥𝑦𝜒𝑥𝑦 + 2𝑚𝑦𝑧𝜒𝑦𝑧

) 𝑑𝑉 (11) 

where   is the etress tensore,   stands the strain 

components, m and χ remain the nanoscale paramaters. 

To compute the kinetic energy, it is necessary to 

determine the absolute velocity of any desired point of the 

nanosheet. When the nanosheet is exposed to transverse 

vibrations, the total displacement vector of each nanosheet 

point in the Cartesian coordinates (x, y, z) is as: 
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𝒓 = (𝑥 + 𝑢1)𝒊 + (𝑦 + 𝑣1)𝒋 + (𝑧 + 𝑤1)𝒌 (12) 

Therefore, the absolute velocity of the axial moving 

nanosheet can be obtained by time deriving of Eq. (12) as 

follows: 

 

𝑽 = [𝑉0 +
𝑑𝑢

𝑑𝑡
− 𝑧

𝑑

𝑑𝑡
(
𝜕𝑤

𝜕𝑥
)] 𝒊 + [

𝑑𝑣

𝑑𝑡
− 𝑧

𝑑

𝑑𝑡
(
𝜕𝑤

𝜕𝑦
)] 𝒋 

+
𝑑𝑤

𝑑𝑡
𝒌 

(13) 

where 
𝑑

𝑑𝑡
= 𝑉0

𝜕

𝜕𝑥
+

𝜕

𝜕𝑡
. As a result, the kinetic energy T 

of the axial moving nanosheet can be determined as 

follows: 

 

𝑇 =
1

2
∫𝜌𝑉2𝑑𝑉
𝑉

=
𝜌ℎ

2
∫

[
 
 
 
 (𝑉0 +

𝑑𝑢

𝑑𝑡
)
2

+ (
𝑑𝑣

𝑑𝑡
)
2

+(
𝑑𝑤

𝑑𝑡
)
2

]
 
 
 
 

𝑑𝐴
𝐴

+ 

+
𝜌ℎ3

24
∫ [(

𝑑

𝑑𝑡
(
𝜕𝑤

𝜕𝑥
))

2

+ (
𝑑

𝑑𝑡
(
𝜕𝑤

𝜕𝑦
))

2

] 𝑑𝐴
𝐴

 

(14) 

where ρ is the density of the nanosheet. 

Substituting Eqs. (11) and (14) in Eq. (10) and using 

strain-displacement Eqs. (8) and (9), the equations 

governing the transverse vibration behavior of axial moving 

nanosheet are obtained as follows: 

 

𝑁𝑥,𝑥 + 𝑁𝑥𝑦,𝑦 +
1

2
(ϒ𝑥𝑧,𝑥𝑦 + ϒ𝑦𝑧,𝑦𝑦) 

= 𝜌ℎ (
𝜕2𝑢

𝜕𝑡2
+ 2𝑉0

𝜕2𝑢

𝜕𝑥𝜕𝑡
+ 𝑉0

2
𝜕2𝑢

𝜕𝑥2
) 

(15) 

𝑁𝑥𝑦,𝑥 + 𝑁𝑦,𝑦 +
1

2
(ϒ𝑦𝑧,𝑥𝑦 + ϒ𝑥𝑧,𝑥𝑥) 

= 𝜌ℎ (
𝜕2𝑣

𝜕𝑡2
+ 2𝑉0

𝜕2𝑣

𝜕𝑥𝜕𝑡
+ 𝑉0

2
𝜕2𝑣

𝜕𝑥2
) 

(16) 

(𝑁𝑥𝑦𝑤,𝑥 + 𝑁𝑦𝑤,𝑦),𝑦 + (𝑁𝑥𝑤,𝑥 +𝑁𝑥𝑦𝑤,𝑦),𝑥 +𝑀𝑥𝑥,𝑥 

+2𝑀𝑥𝑦,𝑥𝑦  

+ϒ𝑦𝑧,𝑥𝑥 − ϒ𝑥𝑦,𝑦𝑦 +𝑀𝑦,𝑦𝑦 + ϒ𝑦,𝑥𝑦 − ϒ𝑥,𝑥𝑦  

= 𝜌ℎ (
𝜕2𝑤

𝜕𝑡2
+ 2𝑉0

𝜕2𝑤

𝜕𝑥𝜕𝑡
+ 𝑉0

2
𝜕2𝑤

𝜕𝑥2
) 

+
𝜌ℎ3

12
(
𝜕2

𝜕𝑡2
+ 2𝑉0

𝜕2

𝜕𝑥𝜕𝑡
+ 𝑉0

2
𝜕2

𝜕𝑥2
) (𝛻2𝑤) 

(17) 

where𝑁𝑖𝑗,𝑀𝑖𝑗and ϒ𝑖𝑗are obtained from the following 

relations: 

 

{𝑁𝑥 , 𝑁𝑦 , 𝑁𝑥𝑦} = ∫ {𝜎𝑥 , 𝜎𝑦 , 𝜎𝑥𝑦}𝑑𝑧
ℎ/2

−ℎ/2

 (18) 

{𝑀𝑥 , 𝑀𝑦 , 𝑀𝑥𝑦} = ∫ {𝜎𝑥 , 𝜎𝑦, 𝜎𝑥𝑦}𝑧𝑑𝑧
ℎ/2

−ℎ/2

 (19) 

{ϒ𝑥 , ϒ𝑦 , ϒ𝑥𝑦 , ϒ𝑥𝑧 , ϒ𝑦𝑧}

= 𝜇ℓ2∫ {𝜒𝑥 , 𝜒𝑦 , 𝜒𝑥𝑦 , 𝜒𝑥𝑧 , 𝜒𝑦𝑧}𝑑𝑧
ℎ/2

−ℎ/2

 
(20) 

Substituting the strain-displacement equations (8) 

and (9) in the equations (18)-(20), the internal forces and 

torques are achieved in terms of displacement fields. By 

substituting the obtained relations in equations (15)-(17), 

the motion equations are obtained in terms of unknown 

variables (u, v, w). For the purpose of solving nonlinear 

differential equations of the coupling governing motion, 

Galerkin technique is used. Considering the boundary 

conditions of moving simply supports, the following 

functions are considered for displacement fields [18]: 

 

𝑢(𝑥, 𝑦, 𝑡) = ∑∑𝑈𝑚,𝑛(𝑡) 𝑠𝑖𝑛 (
𝑛𝜋𝑦

𝑏
) 𝑐𝑜𝑠 (

𝑚𝜋𝑥

𝑎
)

𝑁

𝑛=1

𝑀

𝑚=1

 (21) 

𝑣(𝑥, 𝑦, 𝑡) = ∑∑𝑐𝑜𝑠 (
𝑛𝜋𝑦

𝑏
) 𝑠𝑖𝑛 (

𝑚𝜋𝑥

𝑎
)

𝑁

𝑛=1

𝑀

𝑚=1

𝑉𝑚,𝑛(𝑡) (22) 

𝑤(𝑥, 𝑦, 𝑡) = ∑∑𝑠𝑖𝑛 (
𝑛𝜋𝑦

𝑏
) 𝑠𝑖𝑛 (

𝑚𝜋𝑥

𝑎
)

𝑁

𝑛=1

𝑀

𝑚=1

𝑊𝑚,𝑛(𝑡) (23) 

where 𝑉𝑚,𝑛(𝑡), 𝑈𝑚,𝑛(𝑡)  and 𝑊𝑚,𝑛(𝑡) functions are 

unknown. In order to calculate these unknown functions, 

Galerkin technique is used. Accordingly, by placing the 

hypothetical answers (21)-(23) in Eqs. (15)-(17) and 

applying the Galerkin technique, the nonlinear equations 

with partial derivatives become nonlinear equations with 

the following partial derivatives. 

 

𝑀�̈� + 𝐶�̇� + 𝐾𝑙𝑖𝑛𝑞 + 𝐾𝑛𝑜𝑛𝑞
3 = 0 (24) 

3. Stability analysis 
The obtained second-order Eq. (24) can be reduced to 

first-order equations as: 

 

𝐵𝑍(𝑡) + 𝐸𝑍(𝑡) = 0 (25) 

where  

 

𝐵 = [
0 𝑀
𝑀 𝐶

] , 𝐸 = [
−𝑀 0
0 𝐾

] , 𝑍 = [
𝑞
�̇�] (26) 

Assuming 𝑍(𝑡) = 𝐴𝑒𝑖𝜔𝑡  we can write: 
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𝑌𝐴 − 𝑖𝑤𝐼 = 0 (27) 

in which 𝑰is the unit matrix, and 𝑌 = −𝐵−1𝐸. 

Additionally, ω is the natural complex frequency of the 

system, which can be determined by a key system 

parameter. In frequency, the real and imaginary parts 

represent the vibrational frequency and damping 

coefficient, respectively. As a result, the stability of the 

moving system depends on the sign of the real part of each 

natural frequency. Divergence instability occurs when at 

least one of the natural frequency branches has zero real 

parts, while the imaginary part is negative and the real part 

is zero. In the divergence event, the speed at which the 

divergence occurs is known as the critical speed. The Hopf 

branch experiences flutter instability when at least one of 

the frequency branches has a negative imaginary part and a 

positive real part [19-22]. 

4. Results and Disruptions 
The proposed method is first tested for convergence in 

this section. In addition, the results for the isotropy 

nanoplate are obtained and compared with those existing 

in the technical literature. Furthermore, the influence of 

axial velocity, small size parameters, and large deformation 

are examined separately and simultaneously, with respect 

to natural frequencies, dynamic response, and stability 

limits of axially moving nanosheet. There is also the 

possibility of calculating the dynamic response of the 

system numerically using the fourth-order Runge-Kutta 

method. The presented results are in terms of the following 

dimensionless parameters: 

𝜂 = √
𝜌ℎ

𝐷
𝐿𝑉, 𝛺 = 𝜔√

𝐷

𝜌ℎ𝐿4
, 𝜆 = (

ℓ

ℎ
)
2

 

where 𝜂, 𝛺  and𝜆 represent the dimensionless velocity, 

dimensionless natural frequency and dimensionless size 

parameter, respectively. The geometric and mechanical 

properties of graphene nanosheet are as: a= 5000 nm, 

b=5000 nm, h= 0.335 nm, υ=0.36, E=1.02 TPa, and 

ρ=2300 kg/m3 [23, 24].  

To evaluate the accuracy and convergence of the 

results, the number of sentences within the Galerkin 

method must first be considered. According to the Galerkin 

method, Figure 2 shows the changes in axial velocity 

associated with the first three natural frequencies per 

different number of sentences. Results demonstrate that 

the first two forms of the mode for 5 Galerkin sentences 

converge and that the results for 5 sentences and 10 

sentences are not significantly different. Since the shape of 

the third mode tends to converge after ten sentences, the 

results are derived in this investigation after ten sentences. 

 
Fig. 2 Effect of the number of sentences in the Galerkin method on 

the convergence of results 

 
4.1.Validation of results 

In view of the fact that the behavior of nonlinear 

vibrations of graphene nanosheets under axial motion has 

not yet been investigated, the linear behavior is validated. 

Ignoring the effects of nonlinear sentences, Figure 3 shows 

the real part of the three dimensionless natural frequencies 

of the axially moving nanosheet. The results achieved from 

the present work are dependable with those obtained by 

Arani et al. [25]. There is a discrepancy between the critical 

velocities of the present study and the reference results [25] 

as a result of the difference between the theories employed. 

According to Figure 3, it can be demonstrated that the 

maximum critical axial speed error of the current research 

is around 3%. 

 
Fig. 3 An analysis of the relationship between dimensionless 

frequency and dimensionless axially moving speed for first three 

vibration modes. 

 
4.2. Effect of the small size parameter 

The curves of the imaginary and the real parts of the 

first three natural frequencies of nanoplate are depicted in 

Figures 4a and 4b, respectively, according to the speed of 
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the moving nanofilter and for varying values of the small 

size parameter. Interestingly, when the velocity of the foil is 

zero, its natural frequencies are purely imaginary. With 

increasing speed, the imaginary part of the eigenvalues 

representing the natural frequencies decreases slowly, 

while the real part remains constant. The imaginary part of 

the base frequency of the system becomes zero at the 

critical speed ηcr. After this point, the system becomes 

unstable and buckles. This condition is known as 

divergence. Further increases in speed lead to the base 

frequency becoming completely real, while the 2nd 

frequency decreases uniformly. Further acceleration results 

in a restoration of stability due to the gyroscopic effect. 

Therefore, the starting and ending points of the divergence 

instability are related to the disappearance of the real and 

imaginary parts of the base frequency, respectively. Finally, 

the imaginary parts of the 1st and 2nd natural frequencies are 

combined by a branch of a Paıdoussis-type flutter mode 

instability, whereas their imaginary parts are divided into 

two branches with positive and negative values, causing the 

system to be unstable. In fact, in addition to speeds below 

the critical speed, there is a narrow speed range in the 

operating range of the system (between the end of the 

divergence zone and the beginning of the flutter zone) in 

which the system is also steady. It should be noted that once 

the filter passes the critical speed, the system will no longer 

be stable. This study concludes that the moving nanosheet 

undergo the process of stable evolution of the stable mode 

of the first mode divergence of continuity. Another 

consequence of Figure 4a is that as the small size parameter 

is increased, the imaginary part of the system frequencies 

decreases, especially in the higher modes, which 

demonstrate a more dramatic decline. The result shows 

that the small size parameter increases the critical speed of 

the system and for λ at 0, 1.2, and 1.8 the first two-

dimensional critical speed is approximately 3.14, 3.18, and 

3.42. The explanation for this can be found in the fact that 

since the small size parameter is a part of the stiffness 

matrix, any increase in this parameter results in a more 

stringent system and an extension of the stability zone.

 

  

Fig. 4 (a) Real part (b) Imaginary part of the axially moving nanosheet frequencies 

 

In Figure 5, we explore the impact of the size 

parameter on the first and second critical dimensionless 

velocities of axial moving nanosheet. As can be seen, 

increasing the small size parameter increases the critical 

velocity, and by growing the parameter from 0 to 2, the 

dimensionless critical velocity increases by approximately 

10%. 
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Figure 5 Influence of scale parameter on the first and second dimensional critical velocities of axial moving nanosheet 

 

Figure 6 illustrates the frequencies obtained from the 

modified stress coupling theory for axially moving 

nanosheet. We observe that the scale parameter increases 

the oscillation frequency of the system, and by decreasing 

the thickness of the nanoplate, the influence of the small 

size parameter is amplified. It could thus be concluded that 

for thicker nanosheets (h > 1.25l), the MCST is not required, 

while for thinner nanosheets, the frequency increase is 

significant. 

 
Fig. 6 Influence of scale parameter on the natural first frequency dimension of axial moving nanosheet at different velocities 

 
4.3. Dynamic response 

The vibration time response of axially moving 

nanosheet is studied in this section. Figures 7 through 9 

illustrate the influence of axial velocity on the time response 

of the midpoint of the nanosheet and the phase curve. 

According to the results, the axial velocity has a significant 

influence on the vibration response of nanosheet, and as 

the axial velocity increases, the amplitude of vibrations also 

increases. In addition, according to Figure 9, the motion of 

the system around the point of instability is chaotic, which 

is due to the nonlinear behavior of these systems. 
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Fig. 7 Time response and phase curve of axial moving nanosheet for v = 0.1 

 
Fig. 8 Time response and phase curve of axial moving nanosheet for v = 2 

 
Fig. 9 Time trace and phase curve of axial moving nanosheet for v = 3.14 

 

 

5. Conclusion 
In this study, we investigated the transverse vibration 

behavior and nonlinear dynamics of graphene nanosheet 

under axial motion using modified coupling stress theory. 

To derive the equations of motion, geometric nonlinear 

effects were taken into account and Hamilton's principle 

was applied. The natural frequencies and the system 
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response were derived after discretizing the nonlinear 

equations that govern the motion using the Galerkin 

method.  

- The vibrating of moving nanoplates was found to 

be strongly reliant on the speed at which they 

moved, such that as speed increased, system 

stability decreased and divergence buckling 

became more likely to occur. 

- The application of nonlinear theory led to a 

significant increase in the frequency of the 

nanoplate. 

- Scale parameters affect both the divergence 

instability zero as well as the divergence speed of 

axially moving nanosheets. Such influences 

become more substantial when λ > 0.8. The 

resultss is hoped to be used in optimum design of 

modern NEMS/MEMS equipment’s in small scale. 
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