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Highlights 
 

➢ Evaluating the effective parameters in predicting the pile settlement and to present a trained network, the support vector 
regression (SVR). 

➢ Hybrid Flow Direction Algorithm (SVR-FDA) and Biogeography-Based Optimization (SVR-BBO) methods have been utilized 
to find the optimal conclusions. 

➢ For predictions of pile settlement, all models have the coefficient of determination (R2) larger than 0.995 and 0.994, 
respectively. 

➢ Furthermore, between four hybrid algorithms, SVR-FDA could be proposed as the best model to obtain the most accuracy in 
the prediction of pile settlement. 

 

Article Info   Abstract 

To ensure the safety of constructions such as bridge-owned structures, they must be immunized for 
the operational period. Considering the Pile settlement (PS) factor has to be an important project 
issue, much attention is paid to prevent damage before construction. Various items are considered 
to evaluate the movement of the piles that certainly help to understand a future picture of the 
project over the loading period. Most intelligent mathematical strategies in calculating the pile 
motion are operated. In this regard, the present research has used a machine learning technique: 
vector regression (SVR). That two optimizers were used to find the key variables of SVR accurately. 
Biogeography-Based Optimization (BBO) and Flow Direction Algorithm (FDA) were coupled with 
SVR to create the SVR-FDA and SVR-BBO frameworks. Moreover, several metrics have been used 
to assess the overall performance of models. The R2 of the training phase for SVR-FDA was found 
99.39 percent shows a great modeling process, while the RMSE of this model was calculated 0.4286 
mm. The OBJ index as a comprehensive indicator including MAE, RMSE, and R2 was obtained 
0.2499 mm. 
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1. Introduction 
A number of researches performed on computing the 

reaction of piles to the exposing to the viable axial masses 

and loads are mentioned in lectures with the assist of 

associated research [1], [2]. Existing expertise of how piles 

reply to loads has caused enhancements in many 

techniques that researchers can use to assess pile 

settlement. The techniques stated in various studies had 
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been referred to through numerous researches on this field, 

especially research [3], [4]. Referred strategies vary from 

computation strategies from the complexity term view, 

utilizing analytical and realistic answers, however using the 

finite difference, and finite element ways are numerical. 

Practically, on the equal time, designing strategies for the 

pile is based completely on the sheets under the soil layers 

as the compressible ones. 
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Thus, soil compressive sheets beneath a pile were 

generally accepted because it has been a tangible issue of 

design and the risk that can outstandingly enhance the 

settlement rate of piles. An investigation [5] suggested 

additional settlement rates corresponding to the low-level 

soil sheets, which are too vital for pile geometry, physical 

features of the ground, and limited analysis. Studies of this 

matter apparently are barely done that analytically 

presented manmade computations and solutions which are 

often not practical for current individual soil layers. 

Besides, a study proposed a way to check the 

displacement of the pile and introduced the theoretic 

functions for the investigations on the factor of earth 

pressure [6], [7]. Most research essentially assesses the pile 

movement, but all are used directly to lack a ground 

reflection model. Also, Artificial Neural Networks (ANNs) 

and well-branched machine learning solutions are used in 

several studies, Liu et al. [8] Lee and Lee [9], Che et al. [10], 

Shanbeh et al. [11], and Hanna et al. [12].  Training data, in 

several studies, were augmented, and motion tests were 

selected to create a model capable of predicting the ultimate 

bearing capacity of piles, for which training samples were 

selected from data collected for developed Artificial 

Intelligent (AI) models. One study using ANN attempted to 

calculate results from the settling properties of piles 

embedded in rock. This data set for the training phase was 

collected using the real data report of pile subsidence [13]. 

Regression methods have widely been operated, like 

Gaussian trend regression, multivariate spline adaptive 

regression, as well as mini-max stochastic regression 

machine [14]– [20]. Strategies to issues related to the field 

of geotechnical engineering are being explored using the 

method of gene expression programming [19], [21]– [24]. 

Many studies have examined the mentioned way for 

assigning vertical bearing capacity in piles [21]. The novel 

architecture was devised based on GEP [22]. Another article 

used algorithms to compute the UCS for rock, consisting of 

GEP, support vector machines, and MLP [24]. The 

capability of a support vector machine for appraising the 

displacement of piles socketed in rocks is an allowable fact 

[25]. In fact, support vector machines present high-

accuracy and dependable results. In addition, another 

study evaluated the ultimate bearing capacity of piles using 

this method [26], [27]. In this regard, the input dataset 

contains practical and soil properties that are field-

measured and pile samples and the foundation dimensions. 

The predominant intention of the current paper is to 

compute the displacement of the pile in the rocky ground 

via means of SVR to show a realistic view of pile motion by 

two hybrid models. To this action, these models will be 

combined by the applicable optimization algorithms to 

shape the SVR efficiently to estimate pile settlement 

primarily based on an in-situ dataset. To attain those goals, 

SVR used algorithms including Flow Direction Algorithm 

(FDA) and Biogeography Based Optimization (BBO) to 

compute the optimized coefficient values to enhance 

simulation accuracy while reducing the complexity of the 

calculations’ process. In-field datasets for current research 

in terms of pile movement rates and soil characteristics are 

given relevant to the Malaysia capital (Kuala Lumpur): the 

Klang Valley Mass Rapid Transit (KVMRT) network. 

The proposed frameworks named SVR-FDA and SVR-

BBO strive to feed data of the pile settlement (PS) rates by 

the ratio of 70 and 30 percent for, respectively, training and 

testing phases. For running models, the data of UCS of 

rocks, the column length to diameter ratio, the pile loads, 

the NSPT, the column length beneath the soil to the length of 

the pile in the rock ratio, values of a penetration test have 

been used to appraise the PSs for the KVMRT [28]. Besides, 

reliability investigation of the developed frameworks 

demands the indicators that in current research, the indices 

of R, OBJ, MAE, and RMSE have been utilized to analyze 

the models’ results. 

2. Materials and Methodology 
2.1. Study area: Klang Valley Rapid Transit 

System (KVMRT) 

 

Kuala Lumpur (in Malaysia) is the most populated and 

rapid development city. This congested region and the 

buildings surrounding and infrastructures motivate 

building the Klang Valley Mass Rapid Transit (KVMRT). 

The KVMRT is built to cross the Federal Territory and 

Selangor State of Kuala Lumpur, especially joining areas 

within the Klang Valley region. The 51 km of lines in 

KVMRT includes 35 stations wherein involved both 

underground and surface constructions. That the total 

underground tunnel length is approximately 9.5 km. This 

megaproject constructed in Kuala Lumpur reduces the 

traffic jam problem, including many piles for bridge 

support, which is chosen for this study. Fig. 1 exhibits the 

KVMRT’s location in Malaysia. 

 
2.2. Introducing initial data set 

A number of piles are to be socketed into various rocks 

like limestone, phyllite, sandstone, and granite. The records 

of 96 piles as granite-based in KVMRT were analyzed. The 

SanTrias class granites are utilized for the KVMRT project. 

Materials and subsoil datasets were collected to identify 

general geological features from the pile site. According to 

the architectural assessments of the ground basis, it is made 

up of residual rocks. The gathered dataset is the bedrock 
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depth between 70 cm underground and up to 1400 meters. 

Therefore, the process of getting samples and related 

datasets to excavate the piles’ records in the study area is 

described as follows.

Fig. 1. The location of study area KVMRT 

 

a) The recorded rocks’ masses from moderately to 

highly weathered 

b) The bottom and top value of rocks’ UCS is based on 

the parameter of ISRM, alternatively, at the level of 

25 to 68 MPa, [29]. 

c) Registering the bore log data under the 16.5m, that 

is extremely weathered soil, and the prevailing sort 

of soil is composed of high mud including sand 

accompanied by an at least of 4 to and at most of 

167 of parameter 𝑁𝑆𝑃𝑇  lower than 300 mm, 

alternatively.   

d) A great deal of land under the surface level of the 

ranges 7.5 - 27.0 meters varies with the context of 

𝑁𝑆𝑃𝑇  rates further than 50 m deep for each 300 

mm. 

Creating the best dataset with effective dependencies 

was the first step in making the predictive structure. It is 

necessary to indicate the most important factors shifting 

the model’s outcomes. The above tests were performed 

using pile analysis settings by Pile Dynamic, Inc. It was 

referred to earlier that the diameter and length of columns 

are variables that impact the pile settlement amount. 

In this regard, several variables were opted to assess 

the ramification of the geometry of the pile: 

a) the ratio of the column length under the soil to the 

that in the rock layer (Ls/Lr); b) the ratio of the column 

length to the diameter of the pile (Lp/D); c) UCS of rock d) 

NSPT of rock e) pile load masses (directly affects the 

settlement, so the ultimate potential bearing Qu of the pile 

is considered). So, several parameters were selected as data 

feeding models to appraise the PS values. The inputs’ 

summery feeding the models of this study are shown in 

Table 1.  

 
Table 1. The dataset feeding models of SVR 

Item Symbol Unit Max Min S. deviation Average 

Pile length to diameter Ratio Lp/D - 31.56 4.33 6.55 15.37 

Settlement of pile  PS mm 20.095 4.494 3.690 10.99 

Uniaxial compressive strength UCS MPa 68.489 25.324 12.442 43.411 

Standard penetration test N - 166.42 2.92 59.08 80.03 

Ultimate potential bearing  Qu KN 42701 12409 803 2454 

Soil length to socket length ratio Ls/Lr - 31.714 0.286 6.562 7.063 

 

Also, Fig. 2 indicates measured inputs and target 

values (PSs) with a diagram in which each string shows one 

sample of a pile based on relevant PS has got specific color. 
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Fig. 2. The input and target values diagram 

 
2.3. Support vector regression, SVR 

The SVR machine learning method was suggested for 

calculating the regression matters [30]. Support vector 

regression is used for the regression sorting, wherein the 

tolerance range (ε) is considered for specifying regression. 

Class categorizing to regression for the SVR approach can 

create an optimized hyper-plane. This solution seems to be 

owned by the learning techniques (as the supervised type) 

for finding the answers for matters given the regression 

alongside having the following function [31]. 

𝑚𝑖𝑛𝑤,𝑏 =
1

2
‖𝑤‖2 + 𝐶 ∑ (𝜉𝑖 + 𝜉𝑖

∗)
𝑚

𝑖=1
 

𝑠. 𝑡.    {

𝑦𝑖 − (𝑤𝑇𝑥𝑖 + 𝑏) ≤ 𝜀 + 𝜉𝑖

(𝑤𝑇𝑥𝑖 + 𝑏) − 𝑦𝑖 ≤ 𝜀 + 𝜉𝑖
∗

𝜉𝑖 , 𝜉𝑖
∗ ≥ 0

} 
(1) 

The Eq. (1), the parameter of 𝜉 is the amount of 

boundary violation; 𝐶 shows regularizing variables in a 

queue; 𝑤 is the factor weight; 𝑏 represents bias, and 𝜀 

denotes the deviation rate from the hyper-plane. 

Two terms of fitness function are brought up via Eq. 

(2) and (3): 

  
1

2
 ‖𝑤‖2 (2) 

𝐶 ∑ (𝜉𝑖 + 𝜉𝑖
∗)

𝑚

𝑖=1
 (3) 

 

The former equation was proposed to enhance the gap 

between the samples and hyper-plane, then preserve the 

interval among the samples with the hyperplane; the latter 

equation acts as an adjusting tool. The variables of 𝑤, 𝑏 

were computed over the solvation of function as the target 

of hyperplane boundaries [32]. For the current research, the 

quadratic objective function is operated for desirable 

outcomes. The essential SVR duty is to solve determinative 

variables as optimal magnitudes containing 𝑠𝑖𝑔𝑚𝑎, 𝐶, and 

𝜀. Achieving mentioned key factors requires a smart 

algorithm, in which the optimization process via the two 

optimizers of FDA and BBO was coupled to the SVR for 

appraising them optimally. It should be noted that the 

above mentioned 𝑠𝑖𝑔𝑚𝑎, 𝐶, and 𝜀 can boost the SVR 

accuracy in modeling PS that are brought in Table 2.
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Table 2. The key factors of variables magnitudes of each optimizer 

  SVR-FDA SVR-BBO 

Training phase 

C 0.437 0.577 

EPSILON 4154 958 

𝑠𝑖𝑔𝑚𝑎 4.125 4.617 

Testing Phase 

C 0.138 0.259 

EPSILON 2747 302 

𝑠𝑖𝑔𝑚𝑎 4.848 2.479 

 
2.4. Biogeography-based optimization 

The Biogeography Basis Optimization (BBO) 

algorithm is considered as the metaheuristic way designed 

with the paradigm of geographic distribution, immigration, 

and emigration of species in the ecosystem [33]. This 

optimization algorithm assumes that the ecosystem 

includes a small number of residencies. Various parameters 

called fitness index variables affect the quality of each 

residency for a specimen, such as climate, food, and 

resources of water. The Habitat Suitability Index (HSI) is 

deemed the criterion that reflects the residency condition. 

While the residencies are full or the HSI value is high, the 

specimens migrate from that residency to a low HSI. All 

habitats provide a valid solution, and suitability is the 

variable of decision. In the optimizing operation, responses 

with smaller targets have a higher value of the Habitat 

Suitability Index. This algorithm uses two operators: 

“migration” and “mutation.” Migration operators are used 

to getting neighbors of existing responses, and mutation 

operators are used to exploring and navigating new 

responses. 

Considering residencies accompanied by the size of 

HS, the residencies are registered from their function for 

cost. The desirability of the residencies in the categorized 

classes is indicated through Eq. (4). 

𝐻𝑆𝐼𝑖 = −𝑖 + 𝐻𝑆 + 1 (4) 

Values of emigration and immigration values are 

calculated as follows: 

 

𝜇𝑖 =
𝐻𝑆𝐼𝑖

𝐻𝑆
 (5) 

𝜆𝑖 = 1 −
𝐻𝑆𝐼𝑖

𝐻𝑆
 (6) 

Where the variable of 𝜇𝑖 shows emigration and 𝜆𝑖 

denotes immigration magnitudes. 

 The given Fig. 5 shows the migration process of the 

BBO. Here, the highest emigration and immigration speed 

value is supposed to be 1. Migration from the 𝑗𝑡ℎ decision 

variable of 𝑟𝑡ℎ habitat to the decision variable of 𝑖𝑡ℎ habitat 

is: 

𝐷𝑉𝑗
𝑘 = 𝛼𝐷𝑉𝑗

𝑖 + (1 − 𝛼)𝐷𝑉𝑗
𝑟  (7) 

2.5.  Flow Direction Algorithm 

The Flow Direction Algorithm used in the present 

research is designed by the paradigm of runoff moving to 

different sides that happens in the watershed after the 

rainfall events. Firstly, such a solution creates a primitive 

population over the basin or the answer search area. The 

primitive parameters of the FDA algorithm consist of the 

number of neighbors defined with β, population number 

that is considered with α, and neighborhood radius shown 

with 𝛥. In this optimizer, the initial flows’ positions are 

computed by the Eq. (8): 

𝐹𝑙𝑜𝑤𝑋(𝑖)  =  𝑙𝑏 +  𝑟𝑎𝑛𝑑 × (𝑢𝑏 −  𝑙𝑏) (8) 

Wherein the 𝑟𝑎𝑛𝑑𝑛 is an accidental value in the range 

of [zero-one] with uniform distributing, 𝐹𝑙𝑜𝑤𝑋 denotes the 

positions of flows, 𝑙𝑏, and 𝑢𝑏 denote the low and up limits 

of the decision variables, alternatively. The parameter of β 

as the neighborhood close to the flowing cells is considered, 

and positions can be found by Eq. (9). 

𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟 𝑋(𝑗) =  𝐹𝑙𝑜𝑤𝑋(𝑖) +  𝑟𝑎𝑛𝑑 𝑛 × 𝛥 (9) 

In the Eq. (9), the 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟 𝑋 parameter shows the 

neighbor position; 𝑟𝑎𝑛𝑑 𝑛 represents a random value with 

a standard deviation of 1; The small numbers of 

neighborhood radius (𝛥) searches in the ranges for the 

parameters in finding through the bigger range. In this 

regard, searching on a broader range will result in more 

diverse answers, increasing your chances of getting closer 

to the best answer. This is called global searching. The 

solution gets closer to an optimal global solution and finds 
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a small range of results to have the global solution optimally 

with the desired accuracy. This is named the local 

searching, and it helps to strike a balance between the 

aforementioned features. The 𝛥 direction, moreover, 

represents an arbitrary position for diversity. 

𝛥 = [𝑟𝑎𝑛𝑑 × 𝑋𝑟𝑎𝑛𝑑 −  𝑟𝑎𝑛𝑑 × 

𝐹𝑙𝑜𝑤𝑋(𝑖)] × ‖𝐵𝑒𝑠𝑡𝑋 −  𝐹𝑙𝑜𝑤𝑋(𝑖)‖ × 𝑊 
(10) 

In which the parameter of 𝑟𝑎𝑛𝑑 shows the accidental 

number that is uniformly distributed, 𝑋𝑟𝑎𝑛𝑑 shows the 

random position that is generated by Eq. (10), 𝑊 denotes a 

nonlinear weight with accidental magnitudes in the range 

of [0 to inf]. In Eq. (10), the first term is 𝐹𝑙𝑜𝑤𝑋  that goes to 

a random position called 𝑋𝑟𝑎𝑛𝑑. Moreover, with the second 

term with enhancing iteration, the variable of 𝐹𝑙𝑜𝑤𝑋 is 

close to the parameter of 𝐵𝑒𝑠𝑡𝑋 that the distance of 

Euclidian between 𝐹𝑙𝑜𝑤𝑋 and 𝐵𝑒𝑠𝑡𝑋 is bringing to zeros. 

 
2.6. Evaluative indicators for developed SVR-

FDA and SVR-BBO 

For evaluating the accuracy of the SVR-BBO and SVR-

FDA models to appraise the pile settlement rates for the 

train and test phases, several indicators are shown in Table 

3.

 
Table 3. Evaluative criteria to analyze the models’ performance 

Evaluation criteria Nomenclature Relations Assessment 

Variance account factor VAF (1 −
var(tn−yn)

var(tn)
) ∗ 100  (11) Higher is desirable 

Mean absolute error MAE 
1

N
∑ |pn − tn|N

n=1   (12) Lower is desirable 

Root mean squared error RMSE √
1

N
∑ (pn − tn)2N

n=1  (13) Lower is desirable 

Pearson’s correlation coefficient R2 (
∑ (tn−t̅)(pn−p̅)N

n=1

√[∑ (tn−p̅)2N
n=1 ][∑ (pn−p̅)2N

n=1 ]

)2 (14) Higher is desirable 

Statistical parameters, including the 
various error indices 

OBJ 

(
ntrain−ntest

ntrain+ntest
)

RMSEtrain+MAEtest

Rtrain
2 +1

+

(
2ntrain

ntrain+ntest
)

RMSEtest−MAEtest

Rtest
2 +1

      (15) 

Lower is desirable 
[34] 

 

For the variables in equations (11-15), the estimated 

subsidence rates of pile samples are shown via 𝑝𝑁; 𝑡𝑛 

denotes target value of measured PS; the average pile 

settlement measurements are considered by 𝑡̅; the averaged 

calculated PSs are indicated using 𝑝̅. Moreover, 

alternatively, the ntrain and ntest variables try to show the 

number of samples gathered for the train and test phase. 

3. Results and discussions 
The results of SVR are presented in this section by 

obtaining the SVR-FDA and SVR-BBO models, which are 

machine learning techniques developed to predict the pile 

settlement rate. Therefore, we consider the modeling 

complexity and the cost accompanying increased accuracy 

of PS estimation, and these issues should be addressed by 

considering the optimizer used in current research. 

Modeling is performed using the environment of MATLAB. 

A detailed chart of measured pile settlement extents for the 

KVMRT project used as the study area is indicated in Fig. 

4, wherein data collected were enrolled in models as 70% of 

data for training and 30% for testing stages. 

As shown from Fig. 3, the placement of points is well 

distributed for training and testing steps that in each phase, 

there are varying rates for pile settlements. In Fig. 4, the 

modeling results have been exhibited in front of measured 

ones. 
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Fig. 3. The data feeding models to the simulation of PSs 

SVR-FDA (b) modeling was performed to estimate the 

pile settlement, and the results are in Fig. 4 shows RMSE 

indicator, and R2 was calculated, respectively, 0.484 and 

0.992 mm. However, the best-fit trend line shows the 

relating accuracy of modeling located close to the dotted 

bisector, overestimation of the pile settlement near the pile 

number of 11, and underestimation of the piles with a 

higher number of this rate are obvious. The slope of the 

best-fit trendline of SVR-FDA is 0.92, which shows good 

modeling, while for SVR-BBO (a), this rate is 0.897, which 

has a lower correlation. Also, the RMSE and R2 of SVR-BBO 

with the mentioned rates imply the desirable modeling 

quality but in comparison with another model (b) the BBO 

optimizer could do its job a bit lower with the difference of 

0.29 32.53 percent, respectively, for R2 and RMSE. 

Fig. 4. The modeling results of PS computed by: (a) SVR-BBO and (b) SVR-FDA 

 

Table 4 shows modeling functions for each framework 

with the R2, RMSE, MAE, OBJ, and VAF criteria. The 

results of training and testing stages represent the same 

percentage as considering R2. In the training phase, the 

FDA optimizer is defined better by having 0.994 and for 

BBO, 0.991. Also, VAF shows the same characteristics of the 

two models with the rates of 99.982 and 99.931 for SVR-

FDA and SVR-BBO, respectively. MAE, RMSE, and OBJ 

represent a great mismatch to model the rates of pile 

settlement. For the RMSE, this index has shown a large 

value of 0.429 mm for SVR-FDA and 0.557 mm for SVR-

BBO, with a difference of 29.87 percent. While for the 

testing stage, the FDA optimizer has obtained 0.134 mm, 

and BBO could get 0.247 mm for RMSE, respectively, with 

an 84.82 percent difference. The indicator of MAE also has 

a large difference of 82.59 percent in favor of SVR-FDA 

with an error rate of 0.132. On the other hand, the OBJ 

index shows that SRV-BBO estimates the PS value 0.367 

mm as error and 0.250 for SVR-FDA, to which the 

difference is calculated to be 47 percent, and it is notable 

that this comprehensive assessment criterion has 

encompassed all of the error indexes for training and 

testing phases. 
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Table 4. Results of models’ assessment 
 SVR-FDA SVR-BBO Average 

Criteria used 

Training step 

R2 0.994 0.991 0.992 

RMSE 0.429 0.557 0.493 

MAE 0.426 0.549 0.487 

VAF 99.982 99.931 99.957 

Testing step 

R2 0.9995 0.9985 0.999 

RMSE 0.134 0.247 0.19 

MAE 0.132 0.241 0.187 

VAF 99.998 99.981 99.99 

OBJ 0.25 0.367 0.309 

 

For having a suitable view of modeling differences, Fig. 

5 wants to show the differences in the simulation of the PS 

rate of each model. 

Fig. 5 calculated the change percent of PS modeled by 

SVR-BBO from SVR-FDA. As shown from Fig. 5, except for 

the pile number of three that has been modeled with the 

difference near to 12%, the remaining 95 piles are modeled 

in the different range of ±4. However, the pile with the 

number of 94 has a little more exceeding rate rather than 

other more than four percent. With this figure, it is definite 

that appraising PS rate by both models is done in either 

area of positive and negative relative to each of models that 

in some piles, for example, 37-49 the PS magnitude 

calculated by FDA have been higher rates compared BBO. 

On the other hand, the piles with 53-59 have higher rates 

for the SVR-BBO than SVR-FDA. 

 

Fig. 5. Difference of modeled PS using SVR-BBO and SVR-FDA 

 

To get a specific idea of the accuracy in modeling, the 

PS rate modeled is compared to the measured value to 

display modeling errors in each pile. In Fig. 6, there are 

several cases where the measured value and the proposed 

model’s result do not match. Most simulations are 

performed correctly, as they can be implemented in both 

test and train stages. Figure 6 shows which pile and to what 

extent the deviation is among the model and the field data. 

SVR-FDA(a) was simulated accurately, similar to the 

measurements rates shown in the figure. However, for piles 

7 and 55, the error rate between measurements and 

simulations is greater than other PS modeled. In the same 

way, this story also applies to SVR-BBO (b). Passing the 

dotted line as the boundary between the test and train 

phases further improves simulation accuracy. 

In light of analyzing error rates in both modeling 

processes, Fig. 7 has indicated the trend of error conditions 

for each pile settlement case. At first look, it is clear that the 

error rates in the training phase for both models are greater 

than the testing phase with low error magnitudes. For SVR-

FDA, the error domine is between +10% to -5%, that this 

range for SVR-BBO is +13% to -5%. Actually, with this 

proof, it can be perceptable that the former model has done 

its task at a better level than the later model. As shown from 

Fig. 7, pile number 2 with the error rate of 8.80%, number 

4 with -7.23%, 34 with 9.48% are the cases with high error 

rates. While for SVR-BBO, these ranges have spread to 

greater error rates of 9.56% for pile one, 11.62% for pile two, 

9.54% for pile four, 12.53% for pile 34. But the modeling PS 

in the test phase is acceptable with the error domain of +3% 



           

9 
 

to -1% for SVR-FDA and +6% to -2% for SVR-BBO that the 

former model has had the better result than a latter model. 

 

 

 
Fig. 6. PS simulated and measured modeling with: (a) SVR-FDA and (b) SVR-BBO 
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Fig. 7. The error percentage of PS modeled in, (a) SVR-FDA, and (b) SVR-BBO 

 

In this section, the normal distribution of the error for 

the proposed model is given. In Fig. 8, the error distribution 

of both models shows the same pattern of non-uniform 

error spreading along with the horizontal axis of error. The 

normal distribution curves for SVR-BBO and SVR-FDA 

have a bold difference: the former model has the flattened 

curve while the latter has the bell-shaped one. In this 

regard, neither model has a harmonic pattern of errors. 

These various errors around zero resulted in a flat 

distributed error curve. Concentrating the errors of the 

SVR-FDA model is around -4%, while for SVR-BBO, this is 

around -2%. 

Fig. 8. Error distribution in SVR-FDA model 

 

4. Conclusion 
To immunize structures such as towers and bridged 

ones, it must be safe over the operating period. The factor 

of the pile settlement (PS), as an important issue of the 

project, must be considered before the operation that is 

often avoided. Various items are considered to evaluate the 

movement of the pile and will help you understand the 

future picture of the project during the using the project. 

Most intelligent mathematical strategies are managed 

when calculating a pile movement. In this regard, the 
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present study used the machine learning method, Support 

Vector Regression (SVR), to model the PS rates measured 

as the field data. Two optimizers were used to determine 

key SVR variables accurately. Biogeography-Based 

Optimization (BBO) and Flow Direction Algorithms (FDA) 

were combined with SVR to generate SVR-FDA and SVR-

BBO frameworks. Five metrics were chosen to assess the 

capability of both proposed models apprising the PS 

magnitudes. The correlation index of R2 for SVR-FDA in the 

training phase was at the desirable rate near 100 percent, 

0.993 for SVR-FDA, and 0.990 for SVR-BBO. These rates 

for the testing phase were closer to each other, with a 

difference of 0.1 percent. For RMSE in the training stage, 

the SVR-FDA could obtain the mistake range of 0.428 mm 

in appraising PS, while SVR-BBO could get this value of 

0.556 mm with the discrepancy rate of 29.87%. This index 

for the testing phase got the better rates that for SVR-FDA 

was about 0.133 mm and for SVR-BBO 0.247 mm with the 

difference of 84.82 percent. However, the scale of rates is 

millimeters. The error indicator of MAE also had a similar 

pattern to appraise the PS. In the training phase for the 

SVR-FDA, the MAE was obtained 0.426 mm, which was 

28.81 percent higher than SVR-BBO. Moreover, the OBJ 

index, including the various training and testing phases 

criteria, gives us a better view of each model’s performance. 

This indicator shows the error rate of modeling calculated 

the error rates for SVR-FDA and BBO as 0.249 and 0.367 

mm, respectively. The difference of 46.99% is the sign of 

FDA capability to appraise the PS values. That this 

goodness is definite in the error rates for each pile brought 

up in Fig. (6) and (7). For SVR-FDA, the error domine is 

located between +10% to -5%, and this range for SVR-BBO 

is +13% to -5%. However, as reaching the testing phase, the 

errors of the modeling process reduce to the range of -1% to 

3% for SVR-FDA and -2% to +6% for SVR-BBO; this event 

implies the role of the training phase and preparing for 

testing phase with lower error.  Finally, the results of the 

FDA were better than BBO, with better values of indices. 
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