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Highlights 

 

➢ Development of new ANFIS-based prediction models to evaluate compaction parameters of lateritic soils 

➢ Performance comparison of imperialist competitive algorithm and whale optimization algorithm by developing two hybrid 
models 

➢ Both models have a reasonable performance in predicting with R^2 larger than 0.9038 and 0.9692 for the training data 

➢ The ANFIS-WOA has better performance than the ANFIS-ICA model in both training and testing data 

➢ In the training dataset, the values of R^2 and RMSE are 0.9692 and 0.6188 for the ANFIS-WOA model 

 

Article Info   Abstract 

Empirically, soil compaction is an important aspect in the selection of materials for earth 
constructions. Due to time constraints and attention to completion resources, it is necessary to 
develop models to forecast compaction parameters (maximum dry unit weight (𝛾𝑑𝑚𝑎𝑥) and 
optimum moisture content (𝜔𝑜𝑝𝑡) from easily measured index properties. The main purpose of this 

study is to scrutinize the applicability of using the hybrid adaptive neuro-fuzzy inference system 
(𝐴𝑁𝐹𝐼𝑆) models for predicting the 𝛾𝑑𝑚𝑎𝑥 and 𝜔𝑜𝑝𝑡 related to the standard proctor compaction test 

of lateritic soils. Results present that both models have a reasonable performance in predicting the 
𝛾𝑑𝑚𝑎𝑥 and 𝜔𝑜𝑝𝑡   with 𝑅2 larger than 0.9038 and 0.9692 for the training data, representing the 

acceptable correlation between measured and forecasted 𝛾𝑑𝑚𝑎𝑥 and 𝜔𝑜𝑝𝑡. Regarding developed 

models, the 𝐴𝑁𝐹𝐼𝑆 model optimized with whale optimization algorithm (𝑊𝑂𝐴) has the best 
performance than imperialist competitive algorithm (𝐼𝐶𝐴) model in both training and testing 
phases for predicting 𝛾𝑑𝑚𝑎𝑥 and 𝜔𝑜𝑝𝑡.  
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1. Introduction 
The continuous depletion of valuable land resources 

along with structural expansion has been more important 

in the search for sustainability, so the importance of soil 

compaction cannot be overemphasized. The world's 

population is growing from time to time, and there is a 

constant need for additional infrastructure such as airport 

runways, roads, buildings, piers, dams, railways, and the 
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like [1]– [3]. Every one of these structures is constructed on 

soils that, between times, do not have enough tolerating 

valence to oppose the burdens that are coming on them [4]. 

In Nigeria, the usual soils utilized for construction that are 

laterite are some moments realized inappropriate in its 

normal case for the planned application. So, there is the soil 

betterment’s requirement that compression is between the 

cheapest and the commonest [5]. 
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Lateritic is recognized as extensively modified and 

aerated soils that are organized by in situ weathering and 

decomposition of parent rocks under subtropical and 

tropical climatic conditions [6]. Increasing use of this soil is 

related to its ease of access, compatibility, density, and 

cheapness. Compression of lateritic soils, similar to various 

soils, increases soil bearing capacity. It also declines the 

adverse adaptation value of structures built on such soils 

and raises the stability of slopes [7]. The strength of 

foundations is largely based on compression control, which 

is based on the discovery of the maximum dry weight 
(𝛾𝑑𝑚𝑎𝑥) of the optimum moisture content (𝜔𝑜𝑝𝑡) in the 

energy given to the compaction. 

Experimental compaction is commonly performed in 

Nigeria with British Standard Light, West African standard, 

and British heavy standard. The above-mentioned methods 

are time and material-consuming, and also laborious [8]. 

The deficiencies schemed upper with each other with proof 

by different authors such as Ring et al. [9], Ramiah et al. 

[10], Blotz et al. [11] and lately Anjita et al. [12], that soil 

type, particle size figure, and index properties affect the 
𝜔𝑜𝑝𝑡 and 𝛾𝑑𝑚𝑎𝑥  of soils, tend scholars to suggest 

connections among 𝜔𝑜𝑝𝑡/𝛾𝑑𝑚𝑎𝑥  and index characteristics of 

soils.  Index properties such as plastic limit, plasticity 

index, fine content, liquid limit and many similar cases 

have been applied former.  

Different papers have reported the successful 

application of ANN-based techniques in civil engineering 

[13]–[15] or other fileds [16]–[18]. The links suggested were 

occasionally based upon calculational methods such as 

regression analysis [11], [19]–[21]. In addition to the fact 

that several factors are influenced on compaction 

parameters by Ardakani and Kordanij [22], roughly all 

experimental links suggested from statistical methods such 

as regression analysis might have various deviations. 

However, this idea does not seem to be a good reason. 

Ardakani and Kordanij [22] used the genetic algorithm 

along with ANN to extend similar links for estimating 𝜔𝑜𝑝𝑡 

and 𝛾𝑑𝑚𝑎𝑥. Chenari et al. [23] employed an evolutionary 

polynomial regression method for extending the models to 

estimate 𝜔𝑜𝑝𝑡 and 𝛾𝑑𝑚𝑎𝑥, while Gansoner et al. [24] recently 

proposed a estimation algorithm to forecast 𝛾𝑑 from 

penetrometer tests in the calibration chamber. 
Artificial neural network predicted 𝛾𝑑𝑚𝑎𝑥  and 𝜔𝑜𝑝𝑡 

considered a soil stabilizing compound. Multilayer 

perceptron neural network (MLP) was used for accurate 
modeling of improved soil 𝛾𝑑𝑚𝑎𝑥  and 𝜔𝑜𝑝𝑡. Modified ANN 

was developed for estimating explicit formulas for 𝛾𝑑𝑚𝑎𝑥  
and 𝜔𝑜𝑝𝑡. The results showed that the accuracy of the 

models was admissible in comparison with the 

experimental measurements [25]. Linear log regression 

methods were proposed to estimate 𝛾𝑑𝑚𝑎𝑥 and 𝜔𝑜𝑝𝑡 of fine-

grained soil, where the model gained through multiple 

regression could be used for estimating both parameters. 
Considering 𝛾𝑑𝑚𝑎𝑥  and 𝜔𝑜𝑝𝑡, specific gravity, liquid limit, 

compaction energy, and grain size are contained in the 

most suitable model [26]. Another article was conducted to 

propose empirical relations between 𝛾𝑑𝑚𝑎𝑥 and 𝜔𝑜𝑝𝑡 with 

logarithm of compaction energy and sand content ratio for 

some lateritic soils. Common errors are in the range of 
permissible changes and the standards 𝛾𝑑𝑚𝑎𝑥 and 𝜔𝑜𝑝𝑡, so 

the models are quite strong [27]. 

The main purpose of this study is to scrutinize the 

applicability of using the hybrid ANFIS models for 

predicting the maximum dry unit weight (𝛾𝑑𝑚𝑎𝑥) and 
optimum water content (𝜔𝑜𝑝𝑡) related to standard proctor 

compaction test of lateritic soils. For the prediction 

processes, two hybrid ANFIS models were developed, in 

which two determination variables of the ANFIS method 

were specified using different optimization algorithms, 

named imperialist competitive algorithm (ICA) and whale 

optimization algorithm (WOA). For the prediction process, 

six different variables that can affect the values of the 𝛾𝑑𝑚𝑎𝑥  
and 𝜔𝑜𝑝𝑡 were considered as inputs, named percent of fines 

(FC), gravel content (G), sand content (S), liquid limit (𝜔𝑙), 
plastic limit (𝜔𝑝), and plasticity index (𝐼𝑝). The novelty is 

that considered hybrid ANFIS methods have not been 
proposed to predict the 𝛾𝑑𝑚𝑎𝑥  and 𝜔𝑜𝑝𝑡 of lateritic soils. 

2. Methodology 
2.1. Description of the Dataset 

Ghana contains a large diversity of metamorphic rock 

and Precambrian igneous that could be seen in about half 

of the country’s zone (Fig. 1). The main ingredients are 

quartzites, granite-gneiss, migmatites, schists, phyllites, 

and gneiss. The other country’s area is underlain by 

Paleozoic strengthened alluvial rocks referential to the 

Voltaian organization, including generally sandstones, 

mudstone, shale, sandy and pebbly beds, and limestones 

[28]. 

The observed soil is lateritic soil which can be found in 

various locations of Africa as residual soils. This soil could 

be observed in subtropical and tropical countries under 

specific weather circumstances. Lateritic soils can be 

utilized in the roads’ construction, earth dams, and many 

other projects. There have been many observations on 

lateritic soils, and one of the great substantial features is its 

color, red. Several factors affect the engineering properties 

and scope efficiencies, such as soil genetic type, degree of 

weathering and soil texture, soil formation factor, sample 

depth, and types of dominant clay minerals. The 

construction area is in the Tarkwaian area. This area was 
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limited to different sections and was planned for simple 

reference. Figure 2 shows the regional layout for the 

Tailings Storage Facility (TSF) dam. It also offers about 17 

main planned areas. These areas were divided into smaller 

areas based on the main coordinates. 

Specimens of the fresh soil were sampled from 

deepness of roughly 30cm to 200cm at the time of the 

construction of Tailnings Storage Facility, TSF dam for gold 

mine in Tarkwa, Ghana. Totally, different fresh specimens 

were collected and were analyzed with particle size analysis 

[29], Atterberg limit tests [30], and standard proctor tests 

compaction tests [31]. Standard proctor tests were 

managed manually on the samples. This was utilized to 
specify the 𝛾𝑑𝑚𝑎𝑥  and 𝜔𝑜𝑝𝑡. The soil’s compression was 

finished utilizing the mechanical energy gained from a 

striking hammer.  

In order to design the prediction process of 𝛾𝑑𝑚𝑎𝑥  and 
𝜔𝑜𝑝𝑡 related to the standard proctor compaction test of 

lateritic soils, a dataset was gathered from previously 

mentioned sites [32]. For the modeling outline, six various 

parameters effective on the values of  𝛾𝑑𝑚𝑎𝑥  and 𝜔𝑜𝑝𝑡, were 

selected as input variables, namely percent of fines (FC) 

(the percent passing through the No. 200 US Sieve), gravel 

content (G), sand content (S), liquid limit (𝜔𝑙), plastic limit 
(𝜔𝑝), and plasticity index (𝐼𝑝). Selecting these parameters 

as input variables was according to literature [32] and the 

comparison purposes was followed. Based on the successful 

report of literature about dividing percentage of data [33], 

the collected dataset was divided into two parts, (a) for 

training the models with the proportion of 3/4 (75% (66 

data row)), and (b) for training the models with the 

proportion of 1/4 (25% (22 data row)). The given Table 1 

represent the statistics of variables utilized in models’ 

development. 

The correlation between two variables could be 

computed using the Pearson correlation coefficient (PCC) 

[34]. The PCC matrix between parameters is visualized for 

𝜔𝑜𝑝𝑡 and 𝛾𝑑𝑚𝑎𝑥  as presented in Fig. 3. A high positive or 

negative correlation value could result in difficulties in 

interpreting the effects of the explanatory variables on the 
outputs. Considering the results of 𝜔𝑜𝑝𝑡, Fig. 3a shows a 

large number of the CC between any two variables are 

somewhat small (i.e., lower than 0.486), determining that 

these variables might not cause multicollinearity problems 

[35]. Also, the largest negative and positive CC is between 

𝜔𝑜𝑝𝑡 and 𝐼𝑝, and between 𝐼𝑝 and 𝜔𝑙 at -0.801 and 0.788, 

respectively. Regarding 𝛾𝑑𝑚𝑎𝑥  (see Fig. 3b), the biggest 

negative and positive CC is between FC and S, and between 
𝛾𝑑𝑚𝑎𝑥  and 𝐼𝑝 at -0.77 and 0.834, respectively.
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Fig. 1. Simplified geological map of southwest Ghana [36] 

 

Fig. 2. Site layout of the TSF dam, Tarkwa [32]  

 
Table 1. The statistical indices of the input and output variables 

Index  Inputs Outputs 

G S FC 𝜔𝑙 𝜔𝑝 𝐼𝑝 𝜔𝑜𝑝𝑡  𝛾𝑑𝑚𝑎𝑥 

Training data 

Minimum 0.7 11.0 8.1 19.6 10.8 0.7 11.3 16.1 

Maximum 52.0 76.3 83.4 56.9 32.6 32.9 21.4 24.3 

St. deviation 11.832 17.2879 15.815 8.034 4.973 9.253 2.85 1.7013 

Average 25.7 36.2 38.1 38.1 18.4 19.5 15.5 19.7 

Median 24.0 27.7 37.2 38.3 16.9 22.9 15.6 20.2 

Skewness 0.401 0.4934 0.269 -0.121 0.9674 -0.6 0.301 -0.2035 

Kurtosis -0.577 -1.0867 -0.3904 -0.581 0.3827 -0.91 -0.9054 -0.357 

Testing data 

Minimum 8.5 12.8 15.3 24.3 9.5 0.9 8.8 16.3 

Maximum 44.2 65.3 61.3 51.4 29.1 32.1 24.5 21.5 

St. deviation 9.137 17.3677 13.852 7.89 5.45 8.91 3.524 1.3422 

Average 24.2 37.2 38.5 38.5 18.2 20.4 15.2 19.6 

Median 23.4 34.8 37.8 40.5 18.5 23.5 14.5 19.9 

Skewness 0.571 0.1866 0.0282 -0.2 0.23 -0.9 0.57 -0.655 

Kurtosis 0.1631 -1.374 -0.9178 -1.1 -0.9 0.17 -0.3975 0.0719 
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(a) (b) 

Fig. 3. PCC between the variables for: a) 𝜔𝑜𝑝𝑡, b) 𝛾𝑑𝑚𝑎𝑥 

 
2.2. Applied prediction methods 

2.2.1. Imperialist competitive algorithm (ICA) 

 

The imperialist competitive algorithm (ICA) was 

gained by simulating human social evolution in order to 

solve optimization problems [37]. It is recognized as one of 

the evolutionary methods that might decode the continuous 

function with great efficiency [38]– [40]. In fact, this 

algorithm is a global search method proposed on the basis 

of imperialist competition and social policy [41]. Thus, the 

strongest empire could conquer various colonies with its 

own resources. Other realms can compete for territory 

when an empire falls. The main procedure of this algorithm 

can be explained below steps.  

a) Randomly produce primitive empires and search 

spaces 

b) Colonization: The location of the colonies varies 

according to the position of the countries 

c) Random changes happen in the characteristics of 

each country as a revolution. 

d) Swap territory with empire. A colony with a most 

appropriate location could rise up and control the 

empire and replace the former empire 

e) Empires challenge to conquer the colonies of 

others 

f) Weaker empires would be defeated and deleted. All 

colonies of weaker empires would be lost. At this 

stage, the laws of natural selection apply. 

g) Check the stop criteria. If the stop criteria are met, 

stop the competition process. Otherwise, return to 

the colony assimilation stage (stage b) 

h) End. 

The given Fig. 4 presents the pseudo-code of the ICA 

algorithm.
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Fig. 4 The ICA’s pseudo-code 

 

2.2.2. Whale optimization algorithm 

 

Whale optimization algorithm (WOA) is a congestion 

technique proposed on the natural remedy of humpback 

whales [42]–[45]. The WOA method, similar to population 

algorithms, begins its proficiency with a premier 

production. After that, it calculates an objective 

subordinate for each answer of population. In the final step, 

the optimized solution is selected according to the 

strategies of whales, surrounding the prey and forming a 

bubble net. For surrounding, WOA refreshes the most 

precise answer, hence: 

𝑆𝑊𝑖(𝑡 + 1) = 𝑆𝑊𝑏𝑒𝑠𝑡(𝑡) − 𝐺𝐷 

𝐺 = 2𝑐𝑟2 − 𝑐 

𝐷 = |𝑆𝑊𝑏𝑒𝑠𝑡(𝑡) − 𝑆𝑊𝑖(𝑡)|, 𝐸 = 2𝑟1 
(1) 

D the space between solution 𝑆𝑊𝑖(𝑡) at 

iteration (𝑡) and the best respond 

𝑆𝑊𝑏𝑒𝑠𝑡(𝑡) 

𝑟1 𝑎𝑛𝑑 𝑟2 random coefficients between 1 and 0 

where 𝑐 involves a factor of iteration various in the 

distance among 2 and 0 and is computed as below: 

𝐶 = 𝑐 − 𝑡
𝑐

𝑀𝑎𝑥𝐼𝑡𝑒𝑟𝑤
 (2) 

This algorithm updates the answer with spiral or 

surrounding techniques as presented in Fig. 5 [44]. At begin 

point, the surrounding reducing model is carried out with 

the strategies of factor iteration 𝑐 (Eq. (2)). Or else, the 

spiral method is admitted for the target of refresh answers 

in this technique. WOA creates a helix-shaped movement 

that is simulated. This motion (Eq. (3)) is practically a 

particular movement caught by whales close to the best 

solution (𝑆𝑊𝑏𝑒𝑠𝑡) during preying. 

𝑆𝑊𝑖(𝑡 + 1) = �́�𝑒𝑠𝑘 cos(2𝜋𝑘) + 𝑆𝑊𝑏𝑒𝑠𝑡(𝑡) (3) 

�́� = |𝑆𝑊𝑏𝑒𝑠𝑡(𝑡) − 𝑆𝑊𝑖(𝑡)| (4) 

s The logarithmic spiral shape 

k A random variable between 1 and -1 

Also, the WOA answers could be refreshed through 

transferring between spiral-shaped and decreasing [44], so: 

 

 

𝑆𝑊𝑖(𝑡 + 1)

= {
𝑆𝑊𝑏𝑒𝑠𝑡(𝑡) − 𝐺𝐷                                 𝑖𝑓 𝑟3 < 0.5

�́�𝑒𝑠𝑘 cos(2𝜋𝑘) + 𝑆𝑊𝑏𝑒𝑠𝑡(𝑡)           𝑖𝑓 𝑟3 ≥ 0.5
  } (5) 

𝑟3 The possibility of wrapping in that 𝑟2 ∈ [1,0] 

Naturally, whales mostly admit other strategies when 

preying, which describe the random chase technique; In 

WOA, a random location is picked in the position of the 

optimized answer; therefore: 

𝑆𝑊𝑖(𝑡 + 1) = 𝑆𝑊𝑟(𝑡) − 𝐺𝐷 (6) 

𝐷 = |𝐸𝛿𝑆𝑊𝑅(𝑇) − 𝑆𝑊𝑖(𝑡)| (7) 
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Fig. 5. Process of the whale Optimization Algorithm 

 

2.2.3. The adaptive neuro-fuzzy inference system 

(ANFIS) 

The ANFIS method has been suggested as a soft 

calculating method merges fuzzy logic with neural networks 

[46]. ANFIS was applied chiefly in several engineering 

studies [47], [48]. This technique is able to simulate and 

evaluate the mapping links between dependent and 

independent parameters using a hybrid learning function 

for specifying the optimal membership function 

distribution. The base of ANFIS is the if and then rules (Fig. 

6). This method contains two phases, a premise part, and a 

consequent part. Five layers exist within the inference 

system, each of which consists of several nodes knowns as 

the node function. Previous layers’ nodes emitted output 

signals. When the node function manipulates the output, it 

outputs it as an input signal to the sublayer. At the present 

article, fixed and adaptive nodes are considered to depict 

which set of variables could be readjusted suitably and to 

present they could be totally fixed in the system, 

respectively.  
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Fig. 6. Architecture of ANFIS 

 

2.2.4. Hybrid ICA-ANFIS and WOA-ANFIS 

Generally, the two constituent variables of the ANFIS 

method have a constant and mean input and output 

membership function [49]. The gradient-based (GB) 

techniques were commonly applied to adjust the two 

considered parameters. But, the main defect of this method 

is that the answer is trapped in the local optimality, which 

leads to a reduction in the convergence speed [50]. So as to 

obtain an answer for this problem, different developed 

algorithms could be applied as a solution [51]–[54]. To gain 

this aim, the present study applied two optimization 

algorithms named ICA and WOA (ICA-ANFIS and WOA-

ANFIS). The given Fig. 7 presents the training process of 

this method by mentioned optimizers.  
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Fig. 7. The flowchart of hybrid ANFIS 

 
2.3. Performance evaluators 

Different statistical evaluators were used to appraisal 

the performance of developed models for predicting the 
𝛾𝑑𝑚𝑎𝑥  and 𝜔𝑜𝑝𝑡 of lateritic soils. To this purpose, the 

Coefficient of determination (R2), root mean squared error 

(RMSE), mean absolute error (MAE), relative absolute 

error (RAE), and root relative squared error (RRSE) were 

calculated as precision measurements (Eqs. 8-12).  

𝑆𝑊𝑖(𝑡 + 1) = 𝑆𝑊𝑟(𝑡) − 𝐺𝐷 (8) 

𝑆𝑊𝑖(𝑡 + 1) = 𝑆𝑊𝑟(𝑡) − 𝐺𝐷 (9) 

𝑆𝑊𝑖(𝑡 + 1) = 𝑆𝑊𝑟(𝑡) − 𝐺𝐷 (10) 

𝑆𝑊𝑖(𝑡 + 1) = 𝑆𝑊𝑟(𝑡) − 𝐺𝐷 (11) 

𝑆𝑊𝑖(𝑡 + 1) = 𝑆𝑊𝑟(𝑡) − 𝐺𝐷 (12) 

where, 𝑦𝑃, 𝑡𝑃, 𝑡̅, and �̅� represent the predicted values 

of the 𝑃𝑡ℎ pattern, the target values of the 𝑃𝑡ℎ pattern, the 

averages of the target values, and the averages of the 

predicted values, respectively.  

3. Result and discussion 
3.1. Results of prediction for 𝜸𝒅𝒎𝒂𝒙 

The result of proposed models to predict 𝛾𝑑𝑚𝑎𝑥 related 

to the standard proctor compaction test of lateritic soils is 

provided. Here, the hybrid ANFIS models were proposed in 

order to specify the optimal value of two constituent ANFIS 

variables, which the ICA and WOA algorithms employed to 

the ANFIS for this goal. The collected data were divided 

randomly for training (75%) and testing (25%). The 

comparison between observed and forecasted ANFIS 

models is provided in Fig. 8 and Table 2. The provided Fig. 

9 presents the result of the ICA-ANFIS and WOA-ANFIS 

models by representing the histogram plot of errors of 

𝛾𝑑𝑚𝑎𝑥.  

Regarding performance evaluation criteria, in order to 

have a pervasive comparison of the performance of the 

models, five indices (𝑅2, RMSE, MAE, RAE, and RRSE) 

were evaluated (Table 2). Results present that both models 

have a reasonable performance in predicting the 𝛾𝑑𝑚𝑎𝑥 with 

𝑅2 larger than 0.9038 for the training data, representing 

the acceptable correlation between measured and 

forecasted 𝛾𝑑𝑚𝑎𝑥. Regarding developed models, the ANFIS 

model optimized with WOA has the best performance than 

the ICA model in both training and testing phases. For 

example, in the training dataset, the value of R2, MAE, 

RMSE, RAE and RRSE is 0.9669, 0.2229, 0.3221, 16.6% 

and 18.93% for WOA-ANFIS model, while for ICA-ANFIS 

model are 0.9035, 0.3241, 0.5287, 23.5% and 31.08%, 

respectively. In the testing phase, the WOA-ANFIS model 

also outperform ICA-ANFIS, with R2 (0.8414), MAE 

(0.4415), RMSE (0.5719), RAE (41.43%) and RRSE 

(42.25%). All in all, it is clear that WOA-ANFIS can be 

recognized as the proposed model, which shows its 

capability in finding the optimal value of two constituent 

parameters of the ANFIS. Comparing the results of this 

study with literature show that the results of the proposed 

WOA-ANFIS model are much better than literature with R2 

at 0.76 [32]. 

 
 

Table 2. The values of performance evaluation indices for γ_dmax 

 

Data category Index  ICA-ANFIS WOA-ANFIS [32] 

Training data R2 0.9035 0.9669 0.76 

 MAE 0.3241 0.2229  

 RMSE 0.5287 0.3221  

 RAE (%) 23.50 16.16  

 RRSE (%) 31.08 18.93  

Testing data R2 0.7813 0.8414  

 MAE 0.6251 0.4415  

 RMSE 0.7712 0.5719  

 RAE (%) 58.67 41.43  

 RRSE (%) 56.98 42.25  
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(a) (b) 

Fig. 8. Scatter plot between measured and predicted values of 𝛾𝑑𝑚𝑎𝑥 

  
(a) (b) 

Fig. 9. Results of the introduced models in predicting 𝛾𝑑𝑚𝑎𝑥 

 
3.2. Results of prediction for 𝝎𝒐𝒑𝒕 

The result of proposed models to predict 𝜔𝑜𝑝𝑡 related 

to the standard proctor compaction test of lateritic soils is 

provided. Here, the hybrid ANFIS models were proposed in 

order to specify the optimal value of two constituent ANFIS 

variables, which the ICA and WOA algorithms employed to 

the ANFIS for this goal. The collected data were divided 

randomly for training (75%) and testing (25%). The 

comparison between observed and forecasted ANFIS 

models is provided in Fig. 10 and Table 3. The provided Fig. 

11 presents the result of the ICA-ANFIS and WOA-ANFIS 
models by representing the histogram plot of errors of 𝜔𝑜𝑝𝑡.  

Regarding performance evaluation criteria, in order to 

have a pervasive comparison of the performance of the 

models, five indices (𝑅2, RMSE, MAE, RAE, and RRSE) 

were evaluated (Table 3). Results present that both models 
have a reasonable performance in predicting the 𝜔𝑜𝑝𝑡  with 

𝑅2 larger than 0.9692 for the training data, representing 

the acceptable correlation between measured and 
forecasted 𝜔𝑜𝑝𝑡. Regarding developed models, the ANFIS 

model optimized with WOA has the best performance than 

the ICA model in both training and testing phases. For 

example, in the training dataset, the value of R2, MAE, 

RMSE, RAE and RRSE is 0.9692, 0.3196, 0.6188, 10.98% 

and 17.56% for WOA-ANFIS model, while for ICA-ANFIS 
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model are 0.8928, 0.8603, 1.1544, 29.55% and 32.75%, 

respectively. In the testing phase, the WOA-ANFIS model 

also outperform ICA-ANFIS, with R2 (0.6796), MAE 

(0.1.4823), RMSE (1.7497), RAE (59.31%) and RRSE 

(60.94%). All in all, it is clear that WOA-ANFIS can be 

recognized as the proposed model, which shows its 

capability in finding the optimal value of two constituent 

parameters of the ANFIS. Comparing the results of this 

study with literature show that the result of the proposed 

WOA-ANFIS model is much better than literature with R2 

at 0.707 [32]. 

 
Table 3. The values of performance evaluation indices for ω_opt 

Data category Index  ICA-ANFIS 
WOA-
ANFIS 

[32] 

Training data R2 0.8928 0.9692 0.707 

 MAE 0.8603 0.3196  

 RMSE 1.1544 0.6188  

 RAE (%) 29.55 10.98  

 RRSE (%) 32.75 17.56  

Testing data R2 0.661 0.6796  

 MAE 1.5277 1.4823  

 RMSE 1.8813 1.7497  

 RAE (%) 61.13 59.31  

 RRSE (%) 65.52 60.94  

 

  
(a) (b) 

Fig. 10. Scatter plot between measured and predicted values of 𝜔𝑜𝑝𝑡 



           

87 
 

  
(a) (b) 

Fig. 11. Results of the introduced models in predicting 𝜔𝑜𝑝𝑡 

 

4. Conclusion 
The main purpose of this study is to scrutinize the 

applicability of using the hybrid adaptive neuro-fuzzy 

inference system (ANFIS) models for predicting the 

maximum dry unit weight (𝛾𝑑𝑚𝑎𝑥) and optimum water 
content (𝜔𝑜𝑝𝑡) related to standard proctor compaction test 

of lateritic soils. For the prediction processes, two hybrid 

ANFIS models were developed, in which two determination 

variables of the ANFIS method were specified using 

different optimization algorithms, named imperialist 

competitive algorithm (ICA) and whale optimization 

algorithm (WOA). The main results are as follows:  

• Results present that both models have a reasonable 

performance in predicting the 𝛾𝑑𝑚𝑎𝑥  with 𝑅2 larger than 

0.9038 for the training data, representing the 

acceptable correlation between measured and 

forecasted 𝛾𝑑𝑚𝑎𝑥. Regarding developed models, the 

ANFIS model optimized with WOA has the best 

performance than the ICA model in both training and 

testing phases. For example, in the training dataset, the 

value of R2, MAE, RMSE, RAE and RRSE is 0.9669, 

0.2229, 0.3221, 16.6% and 18.93% for WOA-ANFIS 

model, while for ICA-ANFIS model are 0.9035, 0.3241, 

0.5287, 23.5% and 31.08%, respectively.  

• Results show that both ANFIS models have acceptable 
performance in predicting the 𝜔𝑜𝑝𝑡  with 𝑅2 larger than 

0.9692 for the training data, recognizing the acceptable 
correlation between measured and forecasted 𝜔𝑜𝑝𝑡. 

Regarding developed models, the ANFIS model 

optimized with WOA has the best performance than the 

ICA model in both training and testing phases.  

• Comparing the results of this study with literature show 

that the result of the proposed WOA-ANFIS model is 

much better than the literature [32].  

• All in all, it is clear that WOA-ANFIS can be recognized 

as the proposed model, which shows its capability in 

finding the optimal value of two constituent 

parameters of the ANFIS.  

 
REFERENCES 
 
[1] R. Sarkhani Benemaran, M. Esmaeili-Falak, and H. 

Katebi, “Physical and numerical modelling of pile-
stabilised saturated layered slopes,” Proceedings of 
the Institution of Civil Engineers: Geotechnical 
Engineering, vol. 175, no. 5, pp. 523–538, 2022, 
doi: 10.1680/jgeen.20.00152. 

[2] A. Poorjafar, M. Esmaeili-Falak, and H. Katebi, 
“Pile-soil interaction determined by laterally loaded 
fixed head pile group,” Geomechanics and 
Engineering, vol. 26, no. 1, pp. 13–25, 2021, doi: 
10.12989/gae.2021.26.1.013. 

[3] M. Esmaeili-Falak and R. Sarkhani Benemaran, 
“Investigating the stress-strain behavior of frozen 
clay using triaxial test,” Journal of Structural and 
Construction Engineering, 2022. 

[4] G. Moradi, E. Hassankhani, and A. M. Halabian, 
“Experimental and numerical analyses of buried 
box culverts in trenches using geofoam,” 
Proceedings of the Institution of Civil Engineers-
Geotechnical Engineering, vol. 175, no. 3, pp. 311–
322, 2022. 

[5] M. Esmaeili-Falak, H. Katebi, and A. Javadi, 



           

88 
 

“Experimental study of the mechanical behavior of 
frozen soils-A case study of tabriz subway,” 
Periodica Polytechnica Civil Engineering, vol. 62, 
no. 1, pp. 117–125, 2018. 

[6] C. H. Aginam, N. Chidozie, and A. I. Nwajuaku, 
“Engineering properties of lateritic soils from 
Anambra Central Zone, Nigeria,” International 
Journal of Computing and Engineering, vol. 4, no. 
6, pp. 1–6, 2015. 

[7] U. V. Ratnam and K. N. Prasad, “Prediction of 
compaction and compressibility characteristics of 
compacted soils,” International Journal of Applied 
Engineering Research, vol. 14, no. 3, pp. 621–632, 
2019. 

[8] J. Jayan and N. Sankar, “Prediction of compaction 
parameters of soils using artificial neural network,” 
Asian Journal of Engineering and Technology, vol. 
3, no. 4, 2015. 

[9] G. Ring, “Correlation of compaction and 
classification test data,” Hwy. Res. Bull., vol. 325, 
pp. 55–75, 1962. 

[10] B. K. Ramiah, V. Viswanath, and H. V 
Krishnamurthy, “Interrelationship of compaction 
and index properties,” in Proc. 2nd South East 
Asian Conf on Soil Eng. 577, 1970. 

[11] L. R. Blotz, C. H. Benson, and G. P. Boutwell, 
“Estimating optimum water content and maximum 
dry unit weight for compacted clays,” Journal of 
Geotechnical and Geoenvironmental Engineering, 
vol. 124, no. 9, pp. 907–912, 1998. 

[12] N. A. Anjita, C. A. George, and S. V Krishnankutty, 
“Prediction of Maximum Dry Density of Soil using 
Genetic Algorithm,” International Journal of 
Engineering Research & Technology (IJERT), vol. 
6, no. 03, 2017. 

[13] J. Yuan, M. Zhao, and M. Esmaeili‐Falak, “A 
comparative study on predicting the rapid chloride 
permeability of self‐compacting concrete using 
meta‐heuristic algorithm and artificial intelligence 
techniques,” Structural Concrete, vol. 23, no. 2, pp. 
753–774, Apr. 2022, doi: 10.1002/suco.202100682. 

[14] M. Esmaeili-Falak, H. Katebi, M. Vadiati, and J. 
Adamowski, “Predicting triaxial compressive 
strength and Young’s modulus of frozen sand using 
artificial intelligence methods,” Journal of Cold 
Regions Engineering, vol. 33, no. 3, p. 4019007, 
2019, doi: 10.1061/(ASCE)CR.1943-5495.0000188. 

[15] R. S. Benemaran and M. Esmaeili-Falak, 
“Optimization of cost and mechanical properties of 
concrete with admixtures using MARS and PSO,” 
Computers and Concrete, vol. 26, no. 4, pp. 309–
316, 2020, doi: 10.12989/cac.2020.26.4.309. 

[16] M. Aghayari Hir, M. Zaheri, and N. Rahimzadeh, 
“Prediction of Rural Travel Demand by Spatial 
Regression and Artificial Neural Network Methods 
(Tabriz County),” Journal of Transportation 
Research, 2022. 

[17] X. Shi, X. Yu, and M. Esmaeili-Falak, “Improved 
arithmetic optimization algorithm and its 

application to carbon fiber reinforced polymer-steel 
bond strength estimation,” Composite Structures, 
vol. 306, p. 116599, 2023, doi: 
https://doi.org/10.1016/j.compstruct.2022.116599. 

[18] D.-M. Ge, L.-C. Zhao, and M. Esmaeili-Falak, 
“Estimation of rapid chloride permeability of SCC 
using hyperparameters optimized random forest 
models,” Journal of Sustainable Cement-Based 
Materials, pp. 1–19, 2022. 

[19] M. A. Oyelakin, C. F. Mbamalu, A. A. Amolegbe, and 
S. B. Bakare, “Empirical prediction of compaction 
parameters of soil of south-Eastern Nigeria based 
on linear relationship between liquid limit and 
compaction curve,” in International Conference of 
Science, Engineering & Environmental 
Technology, 2016, pp. 63–69. 

[20] A. Tenpe and S. Kaur, “Artificial neural network 
modeling for predicting compaction parameters 
based on index properties of soil,” International 
Journal of Science and Research, pp. 4–7, 2015. 

[21] M. Esmaeili-Falak and R. Sarkhani Benemaran, 
“Ensemble deep learning-based models to predict 
the resilient modulus of modified base materials 
subjected to wet-dry cycles,” Geomechanics and 
Engineering, 2023. 

[22] A. Ardakani and A. Kordnaeij, “Soil compaction 
parameters prediction using GMDH-type neural 
network and genetic algorithm,” European Journal 
of Environmental and Civil Engineering, vol. 23, 
no. 4, pp. 449–462, 2019. 

[23] R. J. Chenari, P. Tizpa, M. R. G. Rad, S. L. Machado, 
and M. K. Fard, “The use of index parameters to 
predict soil geotechnical properties,” Arabian 
Journal of Geosciences, vol. 8, no. 7, pp. 4907–
4919, 2015. 

[24] Y. Gansonré, P. Breul, C. Bacconnet, M. Benz, and 
R. Gourvès, “Prediction of in-situ dry unit weight 
considering chamber boundary effects on lateritic 
soils using Panda® penetrometer,” International 
Journal of Geotechnical Engineering, pp. 1–7, 
2019. 

[25] A. Hossein Alavi, A. Hossein Gandomi, A. 
Mollahassani, A. Akbar Heshmati, and A. Rashed, 
“Modeling of maximum dry density and optimum 
moisture content of stabilized soil using artificial 
neural networks,” Journal of Plant Nutrition and 
Soil Science, vol. 173, no. 3, pp. 368–379, 2010. 

[26] A. Bera and A. Ghosh, “Regression model for 
prediction of optimum moisture content and 
maximum dry unit weight of fine grained soil,” 
International Journal of Geotechnical 
Engineering, vol. 5, no. 3, pp. 297–305, 2011. 

[27] C. M. O. Nwaiwu and E. O. Mezie, “Prediction of 
maximum dry unit weight and optimum moisture 
content for coarse-grained lateritic soils,” Soils and 
Rocks, vol. 44, 2021. 

[28] S. Dapaah-Siakwan and P. Gyau-Boakye, 
“Hydrogeologic framework and borehole yields in 
Ghana,” Hydrogeology Journal, vol. 8, no. 4, pp. 



           

89 
 

405–416, 2000. 
[29] ASTM D6913-04, “Standard Test Methods for 

Particle-Size Distribution (Gradation) of Soils Using 
Sieve Analysis,” 2017, doi: 10.1520/D6913-04. 

[30] ASTM D4318-10, “Standard Test Methods for 
Liquid Limit, Plastic Limit, and Plasticity Index of 
Soils,” 2014. 

[31] ASTM D698-12, “Standard Test Methods for 
Laboratory Compaction Characteristics of Soil 
Using Standard Effort (12 400 ft-lbf/ft3 (600 kN-
m/m3)),” 2014, doi: 10.1520/D0698-12. 

[32] E. A. Parkoh, “Prediction of compaction 
characteristics of lateritic soils in Ghana,” 
Unpublished master’s thesis]. Near East 
University, 2016. 

[33] R. Sarkhani Benemaran, M. Esmaeili-Falak, and A. 
Javadi, “Predicting resilient modulus of flexible 
pavement foundation using extreme gradient 
boosting based optimised models,” International 
Journal of Pavement Engineering, pp. 1–20, Jul. 
2022, doi: 10.1080/10298436.2022.2095385. 

[34] J. Benesty, J. Chen, Y. Huang, and I. Cohen, 
“Pearson correlation coefficient,” in Noise reduction 
in speech processing, Springer, 2009, pp. 1–4. 

[35] D. E. Farrar and R. R. Glauber, “Multicollinearity in 
regression analysis: the problem revisited,” The 
Review of Economic and Statistics, pp. 92–107, 
1967, doi: 10.2307/1937887. 

[36] J. S. Kuma, “Is groundwater in the Tarkwa gold 
mining district of Ghana potable?,” Environmental 
Geology, vol. 45, no. 3, pp. 391–400, 2004. 

[37] E. Atashpaz-Gargari and C. Lucas, “Imperialist 
competitive algorithm: an algorithm for 
optimization inspired by imperialistic competition,” 
in 2007 IEEE congress on evolutionary 
computation, Ieee, 2007, pp. 4661–4667. 

[38] A. Z. Shirazi and Z. Mohammadi, “A hybrid 
intelligent model combining ANN and imperialist 
competitive algorithm for prediction of corrosion 
rate in 3C steel under seawater environment,” 
Neural Computing and Applications, vol. 28, no. 11, 
pp. 3455–3464, 2017. 

[39] M. Elsisi, “Design of neural network predictive 
controller based on imperialist competitive 
algorithm for automatic voltage regulator,” Neural 
Computing and Applications, vol. 31, no. 9, pp. 
5017–5027, 2019. 

[40] S. Hosseini and A. Al Khaled, “A survey on the 
imperialist competitive algorithm metaheuristic: 
implementation in engineering domain and 
directions for future research,” Applied Soft 
Computing, vol. 24, pp. 1078–1094, 2014. 

[41] L. T. Le, H. Nguyen, J. Dou, and J. Zhou, “A 
comparative study of PSO-ANN, GA-ANN, ICA-
ANN, and ABC-ANN in estimating the heating load 
of buildings’ energy efficiency for smart city 
planning,” Applied Sciences, vol. 9, no. 13, p. 2630, 
2019. 

[42] H. Guo, J. Zhou, M. Koopialipoor, D. J. Armaghani, 

and M. M. Tahir, “Deep neural network and whale 
optimization algorithm to assess flyrock induced by 
blasting,” Engineering with Computers, vol. 37, no. 
1, pp. 173–186, 2021. 

[43] I. Aljarah, H. Faris, and S. Mirjalili, “Optimizing 
connection weights in neural networks using the 
whale optimization algorithm,” Soft Computing, 
vol. 22, no. 1, pp. 1–15, 2018. 

[44] S. Mirjalili and A. Lewis, “The whale optimization 
algorithm,” Advances in engineering software, vol. 
95, pp. 51–67, 2016. 

[45] J. Zhou et al., “Predicting TBM penetration rate in 
hard rock condition: A comparative study among six 
XGB-based metaheuristic techniques,” Geoscience 
Frontiers, vol. 12, no. 3, p. 101091, May 2021, doi: 
10.1016/j.gsf.2020.09.020. 

[46] J.-S. R. Jang, “ANFIS: adaptive-network-based 
fuzzy inference system,” IEEE Transactions on 
Systems, Man, and Cybernetics, vol. 23, no. 3, pp. 
665–685, 1993, doi: 10.1109/21.256541. 

[47] B. P. Sethy, C. R. Patra, N. Sivakugan, and B. M. Das, 
“Application of ANN and ANFIS for predicting the 
ultimate bearing capacity of eccentrically loaded 
rectangular foundations,” International Journal of 
Geosynthetics and Ground Engineering, vol. 3, no. 
4, pp. 1–14, 2017. 

[48] R. Sahu, C. R. Patra, N. Sivakugan, and B. M. Das, 
“Use of ANN and neuro fuzzy model to predict 
bearing capacity factor of strip footing resting on 
reinforced sand and subjected to inclined loading,” 
International Journal of Geosynthetics and 
Ground Engineering, vol. 3, no. 3, pp. 1–15, 2017. 

[49] A. M. Hussein, “Adaptive Neuro-Fuzzy Inference 
System of friction factor and heat transfer nanofluid 
turbulent flow in a heated tube,” Case Studies in 
Thermal Engineering, vol. 8, pp. 94–104, 2016. 

[50] S. Bayat, H. N. Pishkenari, and H. Salarieh, 
“Observer design for a nano-positioning system 
using neural, fuzzy and ANFIS networks,” 
Mechatronics, vol. 59, pp. 10–24, 2019. 

[51] H. Moayedi, M. Raftari, A. Sharifi, W. A. W. Jusoh, 
and A. S. A. Rashid, “Optimization of ANFIS with 
GA and PSO estimating α ratio in driven piles,” 
Engineering with Computers, vol. 36, no. 1, pp. 
227–238, 2020. 

[52] A. Bagheri, H. M. Peyhani, and M. Akbari, 
“Financial forecasting using ANFIS networks with 
quantum-behaved particle swarm optimization,” 
Expert Systems with Applications, vol. 41, no. 14, 
pp. 6235–6250, 2014. 

[53] D. Tien Bui et al., “New hybrids of anfis with several 
optimization algorithms for flood susceptibility 
modeling,” Water, vol. 10, no. 9, p. 1210, 2018. 

[54] M.-Y. Chen, “A hybrid ANFIS model for business 
failure prediction utilizing particle swarm 
optimization and subtractive clustering,” 
Information Sciences, vol. 220, pp. 180–195, 2013. 

  


