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Highlights 

 
➢ Hybrid support vector regression (SVR) models were proposed for developing prediction models to forecast the compressive 

strength of self-compact concrete.  

➢ Henry’s Gas Solubility Optimization (HGSO), Particle Swarm Optimization (PSO) were used. 

➢ SVR model optimized with HGSO algorithm can be proposed as the most appropriate model. 

 

Article Info   Abstract 

Self-compacting concrete (SCC), as a liquid aggregate, is suitable for use in reinforced constructions 
with no need for vibration. SCC utilization has been found in a wide range of projects. Nevertheless, 
those applications are often limited due to lacking the knowledge about such mixed materials, 
especially from experimental testing. The factor of Compressive Strength (CS), which is one of the 
vital mechanical variables in structure immunization, can be computed either through costly tests 
or predictive models. Intelligent systems can appraise CS based on ingredients’ data fed to the 
models. This research aims to model the CS of SCC via a machine learning technique of Support 
Vector Regression (SVR). The Particle Swarm Optimization (PSO) and Henry’s Gas Solubility 
Optimization (HGSO) have been utilized to optimize the SVR in finding some internal parameters. 
Different metrics were chosen to evaluate the performance of models. Consequently, the R2 in the 
testing stage for SVR-HGSO was computed at 0.90 and for SVR-PSO, 0.93. In the calibration phase, 
the correlation rate was computed at 0.93 for SVR-HGSO with a 3% difference from the SVR-PSO 
with 0.90. 
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1. Introduction 
The Self-compacting concrete, known as SCC, is a 

novel type of high-performance concrete (HPC) 

characterized by the given ability for spreading into a 

location under its weight without the vibrations, 

accompanied by self-compacting without any segregation 

and blocking [1]. SCC has three crucial features: I) Filling 

capability, the concrete ability for flowing and filling the 

frameworks by their weight [2]; II) the passing ability, that 

is, the concrete ability for going through the congested gaps 
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of reinforcing bars [3]; and III) Separation resistance is to 

the SCC capability to preserve the uniformity and 

homogeneity of concrete in concreting operation [4]. Using 

self-compacting concrete provides many advantages, 

including saving labor and equipment expenses, 

accelerating construction, allowing more flexibility in 

reinforcing bars, and smoother concrete surfaces [5]. Such 

extraordinary features of this concrete are created using 

supplementary cementitious materials consisting of slag 

cement, fly ash, silica fume, and superplasticizers (SPs) [6]. 
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The presentation of SCC introduces a comprehensive 

technological advance in improving the quality of created 

concrete, making the concrete construction process faster 

and more economical. SCC was first produced in Japan 12 

years ago and has been adopted in Europe, North America, 

and other countries. It would be possible to improve the 

quality of concrete, economic efficiency (improved casting 

speed and reduced labor, energy, and equipment costs), 

and Further development for automation of finished parts, 

by eliminating the compaction operation. Also, bringing up 

the significant improvements in working conditions (mass 

consumption of industries by products and reduction of 

health hazards and noise) [7]–[10]. 

The first generation of SCC used in the UK and Europe, 

such as the one developed in a large European research 

project, which investigated the practicability of using SCC 

in both civil engineering and in building structures, 

contained a high dosage of powder, as well as a high dosage 

of superplasticizer, to ensure adequate filling ability and 

passing abilities and segregation resistance [6]. Savings in 

labor costs might offset the increased cost related to the use 

of more cement and SP, but the use of mineral admixtures, 

such as pulverized fuel ash (PFA), ground granulated blast 

slag (GGBS) or limestone powder (LSP), could increase the 

fluidity of the concrete, without any increase in the cost. 

The incorporation of PFA or GGBS, or LSP reduced the 

requirement of SP necessary to obtain a similar slump flow 

compared with the same concrete containing only cement 

Developed in a major European research project 

investigating the practicality of using SCC in architectural 

and structural engineering, the first-generation SCC used in 

the UK and Europe includes high doses of powder and 

superplasticizer (SP), ensuring sufficient filling and 

passage and resistance to separation [6]. Labor savings can 

compensate for the increasing costs of cement and SP, but 

mineral mixtures such as crushed fuel ash (CFA), ground 

granulated blast slag (GGBS), and limestone powder 

consequently, improve the fluidity of the concrete without 

increasing the cost. Incorporating CFA, GGBS, or limestone 

can reduce the amount of SP required to have a similar 

slump compared to the similar concrete containing only 

cement [6], [10], [11]. Mentioned additives also improved 

rheological variables [11], moreover, reducing the risk of 

concrete cracking due to heat of hydration and thus 

improved durability [12], [13]. Second-generation SCC with 

low powders like LSPs was studied using the design of 

experiments procedures that elaborate slump, V-funnel 

tests, rheological variables, settling, and compressive 

strength [14]. 

Adopting artificial intelligence (AI) techniques is a 

wide range of ways to solve technical problems and develop 

reliable models for predicting structural and material 

behavior. Various AI-based technologies have been used in 

various applications in civil engineering and building 

material performance, especially in appraising the 

compressive strength (CS) of concrete. Machine learning 

approaches with high-accurate abilities to model the key 

variables of dependent types are used in various researches 

[15], [16]. Support vector regression (SVR), a powerful 

branch of machine learning utilized in modeling CS seems 

successful in obtaining desirable assessment stage in a wide 

range of research projects [17]–[19]. The present article has 

attempted to model the CSs of 327 SCC samples by 

reproducing CS factors coupling with novel optimization 

algorithms of Particle Swarm Optimization (PSO) and 

Henry’s Gas Solubility Optimization (HGSO). To help the 

SVR model, optimizers will find the determining variables 

to increase the accuracy and simultaneously reduce the cost 

of the modeling process. Hybrid PSO-SVR and HGSO-SVR 

fed by data will be capable of finding the SCC physical 

feature at a precise level examined via five metrics of R2, 

RMSE, VAF, OBJ, and MAE. 

2. Materials and Methodology 
2.1. Preparation of initial dataset 

Evaluation of the model developed in this study to 

evaluate the compressive strength of SCC experimental 

samples collected from research [20] is one of the main 

goals. SVR’s powerful models try to model CS values where 

optimization algorithms can improve the quality of the 

model’s results which processing dataset is an important 

step in achieving the specified goals. Using the BBO and 

FDA algorithms, SVR finds a better solution for calculating 

embedded variables within predictive models that cause 

hybrid BBO-SVR and FDA-SVR to estimate CS based on 

target values. For the current phase, 327 experimental 

samples were collected and brought up in Table 1. 

Table 1. Specification of studied DGs.  

Component Cement Water Class F fly ash 
Coarse 
Aggregate 

Fine 
Aggregate 

Superplasticizer 
SCC sample 
age 

Compressive 
Strength 

Acronyms C (kg/m3) W (kg/m3) CFFA (kg/m3) CA (kg/m3) 
FA 
(kg/m3) 

SP (kg/m3) Age (days) CS (MPa) 

Max 503.00 390.39 373.00 1190.00 1109.00 113.55 365.00 90.60 

Min 61.00 132.00 20.00 590.00 434.00 0.00 1.00 4.44 

Ave 293.08 197.00 170.23 828.34 807.47 23.15 44.31 36.45 
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St. Dev. 89.78 37.62 69.68 137.30 135.80 27.09 63.76 19.07 

Moreover, mixing ingredients of each SCC sample with 

various dosages will create diverse CS values. Therefore, CS 

modeling is performed via hybrid intelligent solutions. In 

Fig. 1, the CSs are shown via the various combinations of 

the ingredients that each sample of SCC is shown via one 

string crossing different axes representing ingredients, 

finally reaching the axis of CS on the left side. Remarkably, 

the color of strings is to differentiate the samples. 

Fig. 1. The ingredients mixed in SCC samples and the target of CS 

 

In this section, the main model of SVR computing the 

CS values is defined, and the optimization algorithms 

assistant of the main model accurately does its assigned 

task.  

 
2.2. Support Vector Regression, SVR 

The support vector machine, as a technique of 

machine learning, is designed to categorize the regression 

matters that are widely used in many studies [17], [18], [21]–

[23]. The Support Vector Regression (SVR) uses the ε as the 

error area in defining a regression paradigm. It would be 

important that categorizing the classes of regressions can 

be done for defining hyperplane boundaries. Support 

Vector Regression used in the present article is supervised 

for establishing answers for the operation of regression that 

in Eq. (1) develops the attributes [24]: 

𝑚𝑖𝑛𝑤,𝑏 =
1

2
‖𝑤‖2 + 𝐶 ∑ (𝜉𝑖 + 𝜉𝑖

∗),       
𝑚

𝑖=1
 

𝑐𝑜𝑛𝑠𝑡.  {

𝑦𝑖 − (𝑤𝑇𝑥𝑖 + 𝑏) ≤ 𝜀 + 𝜉𝑖

(𝑤𝑇𝑥𝑖 + 𝑏) − 𝑦𝑖 ≤ 𝜀 + 𝜉𝑖
∗

𝜉𝑖 , 𝜉𝑖
∗ ≥ 0

} 
(1) 

Where 𝜉 represents the boundary violation amount; 

the parameter of 𝑦 is the observed CS; regularizing 

parameter in a queue is shown by 𝐶; 𝑏 shows the bias rate; 

𝑤 is considered for the factor weight; also, 𝜀 shows the 

deviation rate in the hyper-plane. Both terms in defined 

relation are elaborated as follows: 

1

2
 ‖𝑤‖2 (2) 

𝐶 ∑ (𝜉𝑖 + 𝜉𝑖
∗)

𝑚

𝑖=1
 (3) 
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Eq. (2) presents the incremental gaps between the 

hyperplane boundaries and samples to create the area 

between the hyperplane boundaries and samples. Another 

relation (3) acts as a corrective tool. In these functions 

targeting the hyperplane, the 𝑤 and 𝑏 magnitudes will be 

estimated. Finally, the quadratic objective function used in 

this paper tries to find the parameters of support vector 

regression optimally, including 𝑠𝑖𝑔𝑚𝑎, 𝐶, and 𝜀 [25]. In 

light of mentioned contents, Fig 2 shows the flowchart of 

developed hybrid models. 

 

 

 

 

 

 

 
Fig. 2. Flowchart of hybrid models’ mechanism 

 

Based on Figure 2, When using raw model, 

performance of designed model can be influenced by 

choosing potential biased rates for arbitrary magnitudes of 

internal settings of main model, including 𝑠𝑖𝑔𝑚𝑎, 𝐶, and 𝜀 

[25]. But in present research optimizing these numbers can 

increase the efficiency of common models in predicting 

compressive strength with high-accuracy modifications. 

 
2.3. Particle swarm optimization algorithm, 

PSO 

The Particle swarm optimization algorithm (PSO) is a 

population basis solution for solving problems [26], [27]. 

This method is created to consider the data swapping in 

animals societies. PSO was designed by Kennedy et al. in 

their research [28], widely cited by several papers [29]–[32]. 

Generally, the variable of position and velocity are 

remarkable items for population regulations. The scoring 

systems are considered to find the appropriate position on 

the local scale, and the best solution is defined as the best 

position for a global answer. The particles’ velocity and 

position are calculated in compute epochs to reach the 

maximum iteration rate. The following equations lead the 

velocities and the locations to be upgraded. 

𝑃. 𝑣𝑖𝑗
𝑛𝑒𝑤 = 𝑊𝑃. 𝑣𝑖𝑗

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 + 𝐶1𝑟1(𝑃. 𝑝. 𝑏𝑒𝑠𝑡𝑖𝑗
𝑛𝑒𝑤  

𝑃. 𝑝𝑖𝑗
𝑐𝑢𝑟𝑟𝑒𝑛𝑡)+𝐶2𝑟2(𝐺𝑙𝑜𝑏𝑎𝑙. 𝑏𝑒𝑠𝑡𝑖𝑗

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 −

 𝑃. 𝑝𝑖𝑗
𝑐𝑢𝑟𝑟𝑒𝑛𝑡) 

(4) 

 𝑃. 𝑝𝑖𝑗
𝑛𝑒𝑤 =  𝑃. 𝑝𝑖𝑗

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 + 𝑃. 𝑣𝑖𝑗
𝑛𝑒𝑤  (5) 

In the above equations, 𝑊 shows the inertia factor; 𝑃. 𝑣 

and P. 𝑝 are the velocity of particles and the positions; The 

parameters of 𝐶1 and 𝐶2 denote the acceleration factors for 

local and global learning are calculated, alternatively;, The 

of 𝑟1 and 𝑟2 parameters represent the random magnitudes 

[0 – 1], and 𝐺𝑙𝑜𝑏𝑎𝑙. 𝑏𝑒𝑠𝑡 shows the best solutions of all 

swarms. 

 
2.4. Henry’s gas solubility optimization 

algorithm, HGSO 

Henry’s gas solubility optimization (HGSO) has been 

constructed in terms of Henry’s laws of physics [33]. 

According to the maximum amount of solute in the 

dissolved form, these rules were established at particular 

pressures and temperatures [34]. By applying the above the 

law, it is possible to prove the solubility of a sparingly 

soluble gas in a certain solvent. The key factors of 

temperature and pressure are the efficient factors for 
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solubility. For gases, this item is reduced by increasing the 

temperature, which is true for solids. In addition, pressure 

gradually leads to improved solubility [33], [35]. The 

following is an overview of the steps required for solving 

problems via HGSO. 

a- Assigning the position and number of gas 

molecules (defining the initial population rate). 

b- Assigning the classes of population as its type. 

c- Assigning the cost classes and then routing the 

best answers scored for assigning the suitable 

conditions. 

d- Recalculation of coefficients in Henry’s law. 

𝐻𝑗(𝑡 + 1) = 𝐻𝑗(𝑡) × 𝑒
(−𝐶𝑗(

𝑇𝜃−𝑇(𝑡)

𝑇(𝑡)×𝑇𝜃))

 
(6) 

𝑇(𝑡) = 𝑒
(

𝑡
𝑖𝑡𝑒𝑟

)
 (7) 

In the above equations, the 𝐻𝑗 for class, 𝑗 represents 

the coefficient for the Henry gas law.𝐶𝑗 and 𝑇𝜃  are the 

accidental and constant number in [zero - 1], respectively. 

In addition, the 𝑖𝑡𝑒𝑟 and 𝑡 parameters show, alternatively, 

the number of iterations in the queue and temperature. 

e- Recalculation of the solubility by Eq. (8). 

𝑆𝑖,𝑗(𝑡) = 𝐾 × 𝐻𝑗(𝑡 + 1) × 𝑃𝑖,𝑗(𝑡) (8) 

In which 𝐾 is a constant number; 𝑃𝑖,𝑗(𝑡) and 𝑆𝑖,𝑗   of gas 

𝑖th and the class of 𝑗 represents, respectively, the parameters 

of pressure and solubility. 
f- Consequently, the primitive population position 

is upgraded via the below relations. 

𝑋𝑖,𝑗(𝑡 + 1) = 𝑋𝑖,𝑗(𝑡) + 𝐹 × 𝑟 × 𝛾 

× (𝑋𝑖,𝑏𝑒𝑠𝑡(𝑡) − 𝑋𝑖,𝑗(𝑡)) + 𝐹 × 𝑟 × 𝛼 

× (𝑃𝑖,𝑗(𝑡) × 𝑋𝑏𝑒𝑠𝑡(𝑡) − 𝑋𝑖,𝑗(𝑡)) 

(9) 

𝛾 = 𝛽 × 𝑒
(−

𝐹𝑏𝑒𝑠𝑡(𝑡)+𝜀
𝐹𝑖,𝑗(𝑡)+𝜀

)
+ 𝜀 

(10) 

For the above equations, 𝛾 represents the gases’ 
interaction potential; the parameters 𝐹𝑖,𝑗 and 𝐹𝑏𝑒𝑠𝑡 

represent the best cost in the gas 𝑖 and cluster of population 
𝑗; 𝑋𝑖,𝑗 shows the 𝑖 gas location in the 𝑗 class; The 𝑋𝑖,𝑏𝑒𝑠𝑡 and 

𝑋𝑏𝑒𝑠𝑡  variables are, respectively, the located gas in the class 

of 𝑗 and the population. The 𝑟 parameter also shows a 

random value in [0 to 1]. The fixed numbers of 𝛼 and 𝛽 will 

be considered 1 as well as 𝜀= 0.05.  
g- The lowest and worst gases are known for passing 

the local minimum trapping. 

𝑁𝑤 = 𝑁 × (𝑟𝑎𝑛𝑑(𝐶2 − 𝐶1) + 𝐶1) (11) 

In Eq. (11), the 𝑁 shows the population and the fixed 

numbers of 𝐶1 and 𝐶2 are assumed to be 0.1 and 0.2, 

respectively. 
h- The location of the worst gas is obtained via the 

below relation. 

𝐺𝑖,𝑗 = 𝐺𝑀𝑖𝑛(𝑖,𝑗) + 𝑟 × (𝐺𝑀𝑎𝑥(𝑖,𝑗) − 𝐺𝑀𝑖𝑛(𝑖,𝑗)) (12) 

Where, 𝐺𝑖,𝑗 parameter denotes the 𝑖 gas position in 𝑗 

class; Moreover 𝐺𝑀𝑖𝑛 and 𝐺𝑀𝑎𝑥  variables represent the 

lower and upper boundary, respectively. 

Examining the performance of HGSO-SVR and PSO-

SVR models 

For evaluating the developed models in terms of error 

rates involved in CS values, the five indices are used to 

examine the effectiveness of HGSO-SVR and PSO-SVR 

models in reproducing compressive strength (CS) of SCC 

samples specified in Table 2.

 
Table 2. Evaluating indices for assessment of model performance 

 
Criteria name Nomenclature Relations Assessment 

Variance account factor VAF (1 −
var(tn−yn)

var(tn)
) ∗ 100  (13) High is good 

Mean absolute error MAE 
1

N
∑ |pn − tn|N

n=1    (14) Low is good 

Root mean squared error RMSE √
1

N
∑ (pn − tn)2N

n=1   (15) Low is good 

Pearson’s correlation coefficient R2 (
∑ (tn−t̅)(pn−p̅)N

n=1

√[∑ (tn−p̅)2N
n=1 ][∑ (pn−p̅)2N

n=1 ]

)2 (16) High is good 
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Statistical parameters, including the 
various error indices 

OBJ 
(

ntrain−ntest

ntrain+ntest
)

RMSEtrain+MAEtest

Rtrain
2 +1

+

(
2ntrain

ntrain+ntest
)

RMSEtest−MAEtest

Rtest
2 +1

      (17) 
Low is good [20] 

In Table 2, 𝑡𝑛 represents CS measured target values; 

𝑝𝑁  refers to the compressive strengths estimated of SCC 

samples; The parameter of 𝑡̅ is the CS measured averagely; 

�̅� denotes the estimated compressive strength rates; Also, 

ntrain and ntest are the numbers of SCC samples for 

calibration and testing stages 

3. Results and discussion 
Creating developed hybrid models, the HGSO-SVR 

and PSO-SVR generated CS values based on input data of 

327 SCC samples fed to models. In this process, the 

information on each ingredient was used to train the 

presented models. Moreover, the optimizers were used to 

find the optimum rate of key variables of SVR that Table 3 

has shown them. On the other hand, the assessment criteria 

examined the SVR-HGSO and SVR-PSO results to 

reproduce the target values of CS. Firstly, the results of 

training each initial sample data were used to feed models, 

and in the testing phase, the capability of models was 

observed, which is discussed in this section. 

. 

 
Table 3. The SVR key variables’ values optimized 

  SVR-HGSO SVR-PSO 
Training phase C 0.915 4.076 

EPSILON 78.006 370.707 
𝑠𝑖𝑔𝑚𝑎 2.6 4 

Testing Phase C 3.024 3.253 
EPSILON 133.550 412.075 
𝑠𝑖𝑔𝑚𝑎 1.680 4 

 

All data of CSs for using in training, validating, and 

testing phases are shown in Fig. 3. It should be noted that 

about 70 percent of data were used in the training phase, 

and the remaining 30 percent were used for validating and 

testing phase equally. By replacement operation of data, it 

is clear that data in the various domains were utilized in 

each stage. 



           

48 
 

 
Fig. 3. All target data of models: compressive strength rates in different phases 

 

The privilege of SCC to High-performance concrete 

(HPC) and traditional or typical concrete is for having the 

ingredient of superplasticizers (SP), fine aggregates (FA), 

and fly ash. In this regard, Fig. 4 shows the roles of each 

presented element in enhancing the CS factor. By surveying 

Fig. 4, they could be presented as three-dimension 

diagrams but are meaningless. The amount of given special 

materials appropriation to cement (C) to have high-

resistant concrete is seeable. Based on Fig. 4, except for SP 

(c), other components positively affect the CS rate. While 

the SP at a high dosage leads to a decrease in the CS. 

Notably, the maximum value of CS happens at the low rate 

of given materials and the high rate of cement. 
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Fig. 4. Effect of composing cement with a) FA, b) fly ash, and c) SP on CS rate in SCC 

 

During the modeling process, errors involved in 

computing CS should be highlighted, and the performance 

of models has to be analyzed. Concerning errors for each 

sample, Fig. 5 has exhibited the modeled compressive 

strength rates beside the target values as observed in 

experiments. According to Fig. 5, there are some points as 

samples that modeling trend and target line are not in same 

rates that this feature creates gaps between them. However, 

the condition for both HGSO-SVR (a) in the testing phase 

seems better. Fig. 6 shows the error rates involved in 

modeling CS for both developed frameworks to have a 

better view of modeling. 

Regarding Fig. 6, the fluctuation of errors for both 

models in the testing phase seems harsher than in the 

training phase. However, the HGSO optimizer has 

smoothed the error graphs with high error rates of 61.28 

percent, while for PSO, 94.76 percent. Nevertheless, the 

average error rate was obtained at 3.83% for HGSO-SVR 

and 7.91% for PSO-SVR. 
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Fig. 5. The CS target value versus the CS values modeled via a) HGSO-SVR and b) PSO-SVR 

Fig. 6. Errors involved in modeling CS with a) HGSO-SVR and b) PSO-SVR 

Trend lines through the CS values modeled for both 

frameworks also are exhibited using Fig. 7. According to the 

fitting line drawn through the CS points in both models, 

HGSO can generate accurate CS values near the target ones 

close to the bisector line rather than to PSO. The slope of 

the best-fit line of HGSO is 0.9 near to one, compared with 

PSO with a 0.85 slope rate. Noticing the distance of y=x 

bisector and best-fit line, it is definite that the gap between 

these mentioned lines for HGSO-SVR is small compared to 

PSO-SVR. However, there are some points in a distant area 

of the HGSO y=x bisector that this case for PSO is better. 

The overall condition of HGSO in spreading CS points 

around the bisector seems desirable compared to PSO. 

 

 
Fig. 7. CS rates are measured in front of estimated ones via the models of a) HGSO-SVR and b) PSO-SVR 
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Align with the previous figures and contents for 

examining the models’ capability to manage errors, the five 

indices used to evaluate the models’ performances are 

illustrated in Table 4 separately for the training and testing 

phases. Based on Table 4, the correlation index of R2 for 

both models in both phases is the same, but the HGSO-SVR 

could obtain a little more than PSO-SVR, that the most 

difference belongs to the test phase with 0.78 percent for 

the better performance of HGSO algorithm. The error rate 

of models has a distinguishable discrepancy from the 

RMSE criterion. The largest difference between models for 

this index belongs to the training phase that HGSO-SVR, 

with a 23.31 percent difference, is placed in better condition 

with RMSE of 3.25 MPa while PSO-SVR was obtained at 

4.01 MPa. The MAE of the training phase for the HGSO 

algorithm was estimated at the level of 1.7 MPa, and that of 

PSO-SVR was calculated at 3.71 MPa, more than two-fold 

of a former model. The VAF indicator also was calculated at 

99.41 for PSO-SVR, 1.05% better than HGSO-SVR. 

Moreover, the OBJ index consisting of all correlation 

indexes, MAE, and RMSE was calculated at a better rate for 

HGSO with 39.19 percent. 

 
Table 4. The results of metrics used to assess the models’ performance  

Training step Testing step Overall 

R2 RMSE MAE VAF R2 RMSE MAE VAF OBJ 

HGSO-SVR 0.9733 3.254 1.700 97.967 0.985 2.964 2.746 99.649 2.657 

PSO-SVR 0.9727 4.012 3.715 99.393 0.977 3.459 3.206 99.522 3.698 

Average 0.9730 3.633 2.707 98.68 0.981 3.211 2.976 99.585 3.177 

 

In this part, the error distribution of developed models 

is indicated. Fig. 8 shows the distribution of errors 

according to their frequency rate and the curve of normal 

error distribution for SVR-PSO and SVR-HGSO. With this 

respect, there is no harmonic error distribution for each 

model.  

 
Fig. 8. The error distribution of models HGSO-SVR and PSO-SVR 

 

That aggregation of error values near point zero 

creates the flat normal distribution curve of errors. 

Therefore, the concentration of errors in the SVR-HGSO 

model was better distributed as near-zero than in another 

model with a flat curve. Overall, the algorithm of HGSO 
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outperformed better than PSO according to the results of 

indices and figures shown. 

4. Conclusions 
Self-compacting concrete (SCC), as a liquid aggregate, 

is suitable for use in reinforced constructions with no need 
for vibration. The utilization of SCC has been found in a 
wide range of projects. Such extraordinary features of this 
concrete are created using supplementary cementitious 
materials consisting of slag cement, fly ash, silica fume, and 
superplasticizers (SPs). The presentation of SCC introduces 
a comprehensive technological advance in improving the 
quality of created concrete, making the concrete 
construction process faster and more economical. 
Nevertheless, most applications are often limited due to 
lacking the knowledge about such mixed materials, 
especially from experimental testing. The factor of 
Compressive Strength (CS), which is one of the vital 
mechanical variables in structure immunization, can be 
computed either through costly tests or predictive models. 
Intelligent systems can appraise CS based on ingredients’ 
data fed to the models. Therefore, this research aims to 
model the CS of SCC via a machine learning technique of 
Support Vector Regression (SVR). Creating developed 
hybrid models, the HGSO-SVR and PSO-SVR generated CS 
values based on input data of 327 SCC samples fed to 
models. In this process, the ingredients information was 
used to train developed hybrid models. 

Moreover, the optimizers were used to find the 
optimum rate of key variables of SVR to assist model the 
CSs accurately with low complexity of calculation. The R2 of 
HGSO-SVR and PSO-SVR in both phases were the same, 
but the HGSO-SVR could obtain a little more rate than the 
latter one, that the most difference belonged to the test 
phase with 0.78 percent for HGSO-SVR. The model error 
rate had a definite difference in terms of the RMSE 
indicator. The largest difference between models for this 
RMSE belonged to the training stage; the HGSO algorithm 
was placed in better condition with a 23.31 percent 
difference for HGSO-SVR with RMSE of 3.25 MPa 4.01 
MPa for PSO-SVR. The MAE of the training phase for the 
HGSO algorithm was estimated at the level of 1.7 MPa, and 
that of PSO-SVR was calculated at 3.71 MPa, more than 
two-fold of the former model. The VAF indicator also was 
calculated at 99.41 for PSO-SVR, 1.05% better than HGSO-
SVR. In addition, the comprehensive criterion of OBJ 
consisting of all correlation indexes, MAE, and RMSE was 
calculated at a better rate for HGSO with 39.19 percent. 

Generally, by using hybrid models and artificial 
intelligent-based models, accuracy of estimating 
compressive strength can be increase to substitute actual 
practical experiments as well as reducing the time and cost. 
Despite using optimization algorithms to regulate the 
function of models to predict some special parameters, the 
process of determining mentioned parameters can be done 
with entered bias due to many malfunctions of algorithms. 
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