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Highlights 
 

➢ A rich dataset of pile settlements is gathered from various kinds of literature. 

➢ A pre-process was implemented to prepare the dataset. 

➢ A robust model is developed based on radial based neural network. 

➢ The robustness of the model improved by coupling the network with the grey wolf and ant colony optimization algorithm. 

 

Article Info   Abstract 

Immunizing projects such as piled bridges entail considerations that ensure safety over the 
operation period. Pile Settlement (PS) which seems one of the most critical matters in 
constructional project failure, has attracted experts’ attention to be predicted before starting 
projects with piles. The variables to appraise the pile movement would help us determine the 
perspectives after and during loading. Theoretical ways to calculate the pile movement 
mathematically have been adopted to model the PS, mostly by using artificial intelligence (AI). This 
paper has aimed to estimate the pile settlement rates based on pile samples. For this reason, a new 
hybrid model containing a Radial Basis Function Neural Network (RBFNN) joining with Grey Wolf 
Optimization (GWO) and Ant Colony Optimization (ACO) were used in a framework. In fact, 
optimizers utilized for calculating the neuron number of hidden layer in RBFNN at optimal level. 
In Malaysia, the Kuala Lumpur transportation network was investigated to examine the pile 
movement based on ground conditions and properties through the developed hybrid RBF-GWO 
and RBF-ACO algorithm. Evaluating each framework’s performance was done via the indices. So, 
the RMSEs of RBF-GWO and RBF-ACO reached values 0.5176 and 0.6562, respectively, and the 
MAE showed the rates 0.2583 and 0.3386, respectively. The correlation R-value also showed the 
RBF-GWO suitable accuracy with 1.23 percent higher than another model. Therefore, results have 
implied the RBF-GWO desirable performance to estimate PS. 
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1. Introduction 
Engineers must consider the ground condition 

resulting from erosion, tectonic activities, or nature 

manipulation by mankind as deep-excavations and 

tunneling on settlement of pile and its foundations. Many 

types of research have extensively examined the reflection 

of piles to changing ground status that has led to pile 

movements [1]– [4]. Whereas the response of pile for issues 

dominated by ground settlements has not yet been 
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completely characterized [5], [6]. The investigation of soil-

pile interaction was done based on both pile settlements 

related to distortions and damage and pile axial forces 

corresponding to the potential for pile cracking [7]– [9]. The 

subsidence of pile seems to relate to factors of loads on the 

pile, the length ratio of the pillar to the diameter of it, the 

UCS parameter in rock, the ratio of the length of the pillar 

in the soil to rock, and the NSPT, as the variable for the soil 

file:///D:/hassani/biliji%20pub/AEIS/issue4/accept/----no%2020/Journal%20Web%20Page:
https://aeis.bilijipub.com/
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penetration [10], [11]. Research classified pile foundations 

into two types: (1) small piled rafts and (2) large piled rafts 

[12]. The first ones are those in which the capacity of 

bearing the unpiled raft is insufficient in order to add piles 

to achieve a suitable factor of safety against bearing 

capacity. The Br parameter as the width of a small piled raft 

is generally narrow compared to the length Lp of the piles 

(Br=Lp<1), and these foundations have rigidity high with 

any issues related to differential settlement. Large piled 

rafts (Br=Lp > 1) are those in which the raft bearing 

capacity is generally sufficient, but subsidence of raft often 

is more than the acceptable magnitude. The analysis and 

design of piles are complex because of their sophisticated 

(raft-pile-soil) interaction and their foundation in response 

to the discrepancy of load, structural configuration, and soil 

properties. Micro-scale studies of experimental types 

including discriminating experiments have examined the 

treatment of pile foundation designs [13]– [15]. Large model 

tests or macro-scale experiments are essential to fully get 

all sides of pile behavior. Such experimental macro-scale 

researches are costly and hard to enact. Therefore, the 

literature contains various simplified and numerical 

methods for predicting pile behavior over movement. 

 A great number of researchers have proposed 

simplified methods to foresee the early load-settlement 

response of pile motion considering the elastic behavior of 

soil. Some simple procedures study the movements of piles, 

where the capacity of the bearing of the pile foundation 

system is added to control excessive settlement [16]. By 

other simplified solutions, load transferring between the 

piles and foundation and soil beneath is considered the 

interaction between piles and ground below [17], [18]. 

Many studies have examined the discontinuous 

resistance at the base of the pile and presented the radial 

force at the circumference of the pile. It is determined 

through a function of fictional stress [19]. As reflected by 

some researchers [17], the studied piles propose a semi-

analytical solution to simultaneously check the 

heterogeneity and non-linearity of the soil. In addition, 

another paper proposes a method to analyze the lifting 

capacity in the pillar and build a theoretical function to 

study the coefficient of lateral earth pressure [20], [21]. All 

of the referred papers chiefly evaluated the motion of the 

pillars, but none were used straightly without a ground 

response model. 

The solution so-called Artificial neural networks 

(ANN) with practical ramifications via a great deal of 

studies such as Che et al. [22], Liu et al. [23], Shanbeh et al. 

[24], Lee and Lee [25], and Hanna et al. [26], have been 

chosen in forecasting some parts of the complicated 

matters of the pile in the capacity of bearing [27]. The 

settlement parameters of the pile and the friction and 

bearing capacity of the pile are being examined by modern 

solutions. Many studies have deployed training data 

collection to produce predictive models for testing pile load 

capacity and settlement of pile amount. The collection of 

data for training was chosen for the neural network from a 

wide range of surveys in the dynamic field [11], [28]. One 

study[29] using the neural network has strived to formulate 

the outputs of load-settlement behavior of piles installed 

into rock. The data set associated with training phase was 

collected from the actual pile reports. ANN suggested 

computed the outcomes more precise and reliable than 

formulas of traditional one. Another paper [30] used ANN 

frameworks to appraise capacity of pile-bearing. 

The present paper has strived to develop practical 

frameworks estimating the pile settlement rates. To this 

end, new hybrid models containing a Radial Basis Function 

Neural Network (RBFNN) joining with Grey Wolf 

Optimization (GWO) and Ant Colony Optimization (ACO) 

were used in two frameworks. In fact, optimizers utilized 

for calculating the neuron number of hidden layer in 

RBFNN at optimal level and evaluate an integrated 

framework as a radial basis function (RBF) neural network 

accompanied by two capable optimization algorithms. The 

mentioned two algorithms were considered as there are not 

any researches using RBFNN coupling with the algorithms. 

Also, the capabilities of them can be found in many 

researches [31]– [34]. The novelty of the present study can 

be defined as using algorithms to estimate the pillar 

settlement installed in rock. The testing data collection for 

pile movement analysis and the ground properties had been 

gathered from the Malaysia transport project in Klang 

Valley Mass Rapid (KVMRT) network in Kuala Lumpur. 

The optimizers coupled with the neural network of radial 

basis function (RBF) have been prospectively surveyed for 

many complicated issues because of the simple, smart, and 

appropriate capabilities. Both techniques are well-known 

in the academic world as a way of machine learning, such 

as the specialization fields on energy transformation, 

biology, image analyzing [35]– [38]. Generally, developing 

boosted models such as hybrid and ensemble ones can lift 

the capabilities of them in tunning the main predicting 

models while some experts have great tendency for hybrid 

than ensemble. The proposed framework is meant to collect 

data by testing penetrating and loading static by real 

ground measurements. With this regard, the load on the 

column, the ratio of the column length to the diameter of 

the column, the UCS used in the rock, the ratio between the 

length of the column in the soil and the rock, and finally, 

the NSPT synthesizing input data to check settlement. 

Column sunk into the ground [39].   
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A series of researches have reported the prospective 

use of RBF in engineering fields, such as prediction in 

precipitation rate by compounding the neural network of 

RBF and optimization algorithms [40], [41]. This study also 

strives to calculate the number of neurons at the optimal 

rate in the middle layer called hidden as well as the 

propagation speed. In fact, using artificial intelligent-based 

techniques are getting common in civil engineering fields to 

save invests, energy, at the same time, increasing the 

accuracy of predictions. 

The parameters are defined as the final capacity 

bearing, the ratio of the column length in the soil to length 

under rock subsurface, plus pile settlement (PS) as the 

target value, the strength of uniaxial compressive, total 

length to cross-section diameter, testing penetration in 

standard status. To investigate and evaluate the fitness of 

the models’ predicted values as pile settlement rates, the 

R2, RMSE, OBJ, and MAE indices were considered for the 

modeling process. 

2. Methodology 
2.1.  Preparing primitive dataset 

The Klang Valley Mass Rapid Transit 

(KVMRT) project in the city of Kuala Lumpur, the country 

of Malaysia, got planned to control the city transportation 

management and got opted as a study case for this research. 

The referred project has many installed piles supporting 

carrying the load masses through pile structures to prevent 

the project from collapsing. The location of the KVMRT as 

a study area is exhibited in Figure 1. Lots of piles on various 

rocks such as granite, limestone, and phyllite can be found. 

In the research, 96 piles were recorded from the granite of 

Santorias class predominates. Data on pile location and 

material existing underground have been vitally discovered 

as geologic characteristics. The underneath the soil layer, as 

found, is made up of leftover rock fragments. Thus, the rock 

in deep underground within the data collected is forecasted 

between 70 centimeters and a depth rate greater than 1400 

m. Moreover, the compilation of sample data has 

introduced as follows: 

a) Lower and higher UCS magnitudes according to 

ISRM, in the range 25 and 68 Mega Paskal (MPa) 

respectively, [42]. 

b) The dominant soil is composed of hard sandy mud 

plus a minimum and maximum rate of  𝑁𝑆𝑃𝑇  of 4 

and 167 blows per 300 mm, respectively. 

c) The observed masses of rocks are moderate to 

extremely variable 

d) Bore gathered information of piles in 16.5 meters, 

soils highly weathered and common soils 

commonly with silt.

 

 

Fig. 1. The study area of KVMRT, Malaysia 
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Arranging the principal data based on the entering 

ones must appear as the primary stage to estimate the 

model’s outputs. Considering parameters affecting outputs 

of the model seems necessary for the proposed framework. 

Pillar Dynamic Inc. carried out the above ground analyses, 

which performed the pile analysis. Nonetheless, the pile 

length and the cross-sectional diameter of the pile, as 

previously stated, are involved as parameters to predict the 

pile settlement during the pile loading period. In this 

regard, two options to consider the ratio of pile length in 

sheets of soil to pile length in rock level (𝐿𝑠/𝐿𝑟), and the 
ratio of all lengths of a pillar to its diameter (𝐿𝑝/𝐷) are 

opted to analyze the current state of pile geometry. 

Regarding the solving process, the rate of the NSPT is also 

used as input data to use the ground situation. Additionally, 

the UCS of soil is entered as primary data to the model to 

estimate the pile motion. Moreover, piles would have a 

straight consequence on the pile displacement over the 

loading stage. The input data assign the ultimate bearing 

capacity of the pile called Qu. 

Nevertheless, some information is supposed to be used 

to estimate and survey the settlement of piles. The entering 

data results of the present research, plus the target values 

of pile settlements to reveal ranges, are shown in Table 1. 

The histograms of the input and target values of pile 

settlements are also brought in through Figure 2. 

 
Table 1. Specification of studied DGs.  

Variable 𝐋𝐩/𝐃 𝐋𝐬/𝐋𝐫 𝐍𝐒𝐏𝐓 UCS (MPa) 𝐐𝐮 (𝐊𝐍) PS (mm) 

Max. 32 32 166 68 42701 20.1 

Min. 4 0.3 3 25 12409 4.5 

St. Dev  7 7 59 12 8030 3.7 

Median 14 4 104 43 21898 11 

Avg. 15 7 80 43 24540 11 

As shown via Fig. 2, the histogram plots attempt to 

indicate the frequency of each variable as Lp/D, Ls/Lr, Qu, 

NSPT, UCS are diagnosed to impact the settlement of pile. 
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Fig. 2. The histograms of the primitive dataset to model the pile settlement 

 
2.2. RBF; neural network of Radial basis 

Function  

This neural network, owning a simple structure and 

great capabilities, is a suitable and quick estimator [43]. The 

proposed neural network of RBF consists of the following 

layers: I) input layer, II) hidden layer, and III) output layer. 

The number of neurons inside the hidden layer is the main 

aim of this research to compute at an optimal rate with low 

cost and complexity of the network to improve the accuracy. 

The proposed RBF amplitude is simply separated from the 

CenterPoint. This is usually based on using the Euclidean 

rule. A complement of principal functions was operated to 

guide the vector between input and output. The formula of 

Gaussian is used as the math operator mainly by several 

methods of infinity and understandability. The lattice result 

for the Gaussian formula, which acts as an essential 

function, is brought up as following equations: 

Φ (X, Xj) = Φ (|| X-Xj||), X= [x1, x2, x3…, xn] (1) 

Φ (r)= 𝑒−
𝑟2

𝜎2  
(2) 

yk = ∑ 𝜔𝑖𝑘𝛷(𝑋, 𝑋𝑖)
𝑚
1  (3) 

For the abovementioned relations, yk represents the 

layer of output, the variable of Xi denotes the X center, 

σ shows the smoothness, X shows the i th layer of the input 



           

32 
 

vector, || f || represents the norm of Euclidean, Φ 

represents the basic function. 

 
2.3. GWO; Grey Wolf Optimization 

Grey Wolf Optimization is known as the algorithm of 

meta-heuristic [44]. Grey wolves pass their life with 

intensive social treatments. Leader wolves are named 

alpha, beta superior, and omega ones as a scape GWO. Over 

the rank belonged to wolves, they have tracked encircling, 

invading, then hunting. This characteristic is formulated 

mathematically as following equations [44]. 

 

�⃗⃗� = |𝐶 . 𝑋𝑃
⃗⃗ ⃗⃗  (𝑡) − 𝑋 (𝑡)| (4) 

𝑋 (𝑡 + 1) = 𝑋𝑃
⃗⃗ ⃗⃗  (𝑡) − 𝐴 . �⃗⃗�                  (5) 

𝐴 = 2𝑎 . 𝑟1⃗⃗⃗  − 𝑎 ⃗⃗⃗   (6) 

𝐶 = 2. 𝑟2⃗⃗  ⃗ (7) 

Wherein, 𝑋  represents the position of grey wolf 

location; 𝑋𝑃
⃗⃗ ⃗⃗  (𝑡) the vector of prey position; t shows the time, 

a represents reduction from 2 to 0 linearly; 𝑟1⃗⃗⃗   and 𝑟2⃗⃗  ⃗ shows 

the random vectors monotonously distributed between 0 

and 1. 

Generally, the hunting way of wolves is modeled 

through those close to the prey at enough distance. Then, 

the remaining ones based on alpha, beta, and omega 

positions would find food positions. Locations of preys are 

estimated via the average wolves’ situations via the 

following equations:  

 

{

𝐷𝛼
⃗⃗⃗⃗  ⃗ = |𝐶1

⃗⃗⃗⃗ . 𝑋𝛼
⃗⃗ ⃗⃗  − 𝑋 |

𝐷𝛽
⃗⃗ ⃗⃗  = |𝐶2

⃗⃗⃗⃗ . 𝑋𝛽
⃗⃗ ⃗⃗  − 𝑋 | 

𝐷𝛿
⃗⃗ ⃗⃗  = |𝐶3

⃗⃗⃗⃗ . 𝑋𝛿
⃗⃗ ⃗⃗  − 𝑋 |

} , {

𝑋1
⃗⃗⃗⃗ = 𝑋𝛼

⃗⃗ ⃗⃗  − 𝐴1
⃗⃗⃗⃗ . 𝐷𝛼

⃗⃗⃗⃗  ⃗

𝑋2
⃗⃗⃗⃗ = 𝑋𝛽

⃗⃗ ⃗⃗  − 𝐴2
⃗⃗ ⃗⃗ . 𝐷𝛽

⃗⃗ ⃗⃗  

𝑋3
⃗⃗⃗⃗ = 𝑋𝛿

⃗⃗ ⃗⃗  − 𝐴3
⃗⃗ ⃗⃗ . 𝐷𝛿

⃗⃗ ⃗⃗   

},   

𝑋 (𝑡 + 1) =
𝑋1
⃗⃗⃗⃗ + 𝑋2

⃗⃗⃗⃗ + 𝑋3
⃗⃗⃗⃗ 

3
    

(8) 

Next to the prey position, later stage would be the 

exploitation, which is calculated from the 𝐴  vector. If the 

magnitude of parameter 𝑎 changes from 2 to 0, the 

situations of these animals displace to the prey position. 

Further, the value of 𝐶 could change the situation of prey 

and the strictness of the hunting procedure. The value of 𝐴 

as being more than 1 convinces the grey wolf to get a part of 

the prey and find an appropriate one. Moreover, this 

procedure cycles for the whole of wolves, in which the 

optimum location can finally be found.  

 

 

2.4.  ACO; Ant Colony Optimization 
 

Ant Colony Optimization (ACO) uses the treatments of 

blind ants that developed a basis of population heuristic 

technique, as ACO [45], [46]. Materials such as pheromones 

have been known substances that deposit on the earth that 

ants carry food from their source to their nests. They exploit 

the mentioned way to non-straightly convey data about the 

closest path among the nest and food source and operate a 

chemical substance’s strength (pheromone) to assess its 

capability for the path registered. 

The ant number as m (colony size) got opted. Then, the 

initial severity of the right substances (pheromone) that is 

called τ0 determined for the whole of eij. The Pheromone 

primitive severity is usually calculated with Eq. (9) [47]: 

 

𝜏0 =
1

𝑛𝐿𝑛𝑛

 (9) 

That Lnn denotes the variable of tour length among n 

number colonies (cities) developed through adjacent 

heuristic vicinage [48]. Satisfying these tasks’ restrictions is 

not important by task [33], [49]. Ant colonies move between 

the vertices to build a solution to the problem. Given any 

preselected design variables as i, a probabilistic local 

decision policy is applied via ant k to opt for an accessible 

choice to variables. The Transition Rule of Random 

Proportional was defined [50], [51], that this policy of 

decision is determined by two parameters: visibility 

(attractiveness of movement) and level of the trail 

(pheromone severity). Visibility preliminarily shows the 

desire for movement, presents an artificial spectacle for 

choosing the closest path from options without experience 

or observation of movement, and indicates the experience 

has gained at that stage. The transition rules that k (ant) 

uses for opting a choice is: 

 

𝑝𝑖𝑗  (𝑘, 𝑡) =
[𝜏𝑖𝑗(𝑡)]

𝛼[𝜂𝑖𝑗]
𝛽

∑ [𝜏𝑖𝑗(𝑡)]
𝛼[𝜂𝑖𝑗]

𝛽𝐽𝑖
𝑗=1

 (10) 

Wherein pij denotes the expectancy which the ith point 

of decision of choice j is chosen by ant k in the t number of 

iterations; τij indicates a rate of trail in choice eij at the t 

iteration, ηij is the ant scope of the showing the selecting 

choice j cost locally over the point of decision of ith (ηij =1 

divide to cij); α as well as β denotes two variables modifying 

proportional level importance of trail versus scope. 

The ACO method employs several concepts from 

theory of graph. Objective function that violates the 

induced restrictions are penalized via a static way: 

 

https://en.wikipedia.org/wiki/Biogeography-based_optimization
https://en.wikipedia.org/wiki/Biogeography-based_optimization
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fp (ψk) = f (ψk) [1+Φ] ε  (11) 

In Eq. (9) fp (ψk) denotes the function of goal penalized 

by kth ant; the variable of Φ shows penalty totally and the 

penalties sum of deflection plus force; ε represents an 

exponent of positive penalty, which is fixed in the static 

penalty way modified relatively to the violation extent in the 

restrictions in adaptive penalties [48]. Ants build m ways 

incrementally to issue via selecting solutions to move 

among nodes of decision, to observe every node, when the 

whole of nodes is observed and returned to their original 

state. Until they get back to starting position, ants finish a 

course that everyone creates its trial way, ψk. The concept 

of one cycle seems finished if ants with the number of m 

accomplish courses and build the practical way of m. 

An iteration reaches an end if m ants make “m” moves, 

each making one in the time interval (t, t + 1). Trail levels at 

the end of a cycle (at time t + n) are a function of the trail 

levels at the beginning of the cycle, the tour constructed by 

the elitist ant, and the tours made by the top ranked ants, 

and they are calculated as: 

 

𝜏𝑖𝑗  (𝑡 + 𝑛) = (1 − 𝜑) 𝜏𝑖𝑗(𝑡) +  𝜆𝛥𝜏𝑖𝑗
+ + 𝛥𝜏𝑖𝑗

𝑟
 (12) 

in the mentioned equation, the variable of φ is the 

coefficient of decay (0 ≤ φ ≤ 1) [52], denoting the 

persistence of the trail. 𝛥𝜏𝑖𝑗
+ is the incremental trail level 

corresponding to the solution found by the elite ant of ψ+. ρ 

shows an adjustable parameter in the range 0 ≤ ρ ≤ 1. That 

the change in the trail level of the path i-j (Δτij
μ

), when opted 

with the ant ranked μ (1 ≤ μ ≤ λ), is calculated with: 

 

𝛥𝜏𝑖𝑗
𝜇

=
𝑅

𝑓(𝜓𝜇)
 (13) 

wherein 𝑓(𝜓𝜇) is the fitness value of the solution 

created by the ant ranked μ, and R is a magnitude 

regulating the contribution of the top ranked ants named 

the pheromone reward factor [53]. The path i-j may be 

selected by more than one ant. Therefore, the total increase 
in the trail level of the path (Δ𝜏𝑖𝑗

𝑟 ) is given by: 

 

𝛥𝜏𝑖𝑗
𝑟 = ∑𝛥𝜏𝑖𝑗

𝜇

𝜆−1

𝜆=1

 (14) 

2.5. Hybrid radial basis function neural 
network models 

The radial basis neural network for the present is 

known as a model including the input, hidden, and output 

layers. Thus, convergence in the model of RBF will be high 

[54]. The neurons embedded in the input layer operate the 

parameters to the hidden layer, where the Gaussian 

function indicates the hidden layer’s neurons. The RBF 

neural network must reflect on the input signals near the 

center point in the relevant function. The outcomes of the 

resulting hidden layer are headed to a layer of output, in 

which it is mainly a linear function that easily enacts [55]. 

As shown in Fig. 3, the network inputs are located in 

the input layer. Also, w denotes weight which 𝑤0 is the 

weight of the output layer. The function of Gaussian (𝜑) 

used in this study appears to be Eq. (15): 

 

𝜑𝑖 = 𝑒𝑥𝑝 (−
‖𝑡 − 𝑐𝑖‖

𝜎𝑖
2 ) (15) 

𝑌 = 𝑊𝑇𝜑 = ∑𝑤𝑖𝜑(

𝑞

𝑖=1

‖𝑡 − 𝑐𝑖‖) (16) 

 

Wherein, 𝜑𝑖 represents output of 𝑖𝑡ℎ node of hidden 

layer; 𝑐𝑖 shows Prototype center of 𝑖𝑡ℎ  Gaussian function, 𝜎 

denotes spread rate parameter; ‖𝑡 − 𝑐𝑖‖ represents the 

distance between input 𝑡 and 𝑐𝑖. The RBF neural network as 

a modifiable strategy for dedicating the spread rate and the 

neuron number of hidden layers is to be adjusted by 

determining parameters to increase the efficiency. 

Meanwhile, defining the appropriate composition of 

neuron numbers and spread rate would be calculated using 

two algorithms of research. Both hybrid RBF-GWO RBF-

ACO frameworks are operated to devise the capable model. 

The GWO and ACO would compute the optimal number of 

neurons within the hidden layer and the spread rate in the 

RBF structure.
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Fig. 3. Radial Basis Function structure coupling optimizers 

 
2.6. Investigating the performance of 

modeling using the criteria 

The criteria used to examine the performance of the 

hybrid RBF frameworks are described in Table 2. In Table 

2, the 𝑝𝑁  denotes forecasted magnitude; 𝑡𝑛 is 𝑛𝑡ℎ pattern; 𝑡̅ 

shows the objective amounts relevant to the 𝑁𝑡ℎ; �̅� is the 

target values averaged as estimated. Further, the ntrain and 

ntest, respectively, show the data number in the training and 

testing stages. 

 
Table 2. The indices for evaluation of developed RBF models 

 
Evaluator name Symbol Equation Description 

Mean absolute error MAE 
1

𝑁
∑|𝑝𝑛 − 𝑡𝑛|

𝑁

𝑛=1

 Low is desirable 

Variance account 
factor 

OBJ 

(
𝑛𝑡𝑟𝑎𝑖𝑛 − 𝑛𝑡𝑒𝑠𝑡

𝑛𝑡𝑟𝑎𝑖𝑛 + 𝑛𝑡𝑒𝑠𝑡
)
𝑅𝑀𝑆𝐸𝑡𝑟𝑎𝑖𝑛 + 𝑀𝐴𝐸𝑡𝑒𝑠𝑡

𝑅𝑡𝑟𝑎𝑖𝑛
2 + 1

+ (
2𝑛𝑡𝑟𝑎𝑖𝑛

𝑛𝑡𝑟𝑎𝑖𝑛 + 𝑛𝑡𝑒𝑠𝑡
)
𝑅𝑀𝑆𝐸𝑡𝑒𝑠𝑡 − 𝑀𝐴𝐸𝑡𝑒𝑠𝑡

𝑅𝑡𝑒𝑠𝑡
2 + 1

 

Low is desirable 

Root mean squared 
error 

RMSE √
1

𝑁
∑(𝑝𝑛 − 𝑡𝑛)

2

𝑁

𝑛=1

 Low is desirable 

Variance account 
factor 

𝑉𝐴𝐹 (1 −
𝑣𝑎𝑟(𝑡𝑛 − 𝑦𝑛)

𝑣𝑎𝑟(𝑡𝑛)
) ∗ 100 High is desirable 

Pearson’s correlation 
coefficient 

R (
∑ (𝑡𝑛 − 𝑡̅)(𝑝𝑛 − �̅�)𝑁

𝑛=1

√[∑ (𝑡𝑛 − �̅�)2𝑁
𝑛=1 ][∑ (𝑝𝑛 − �̅�)2𝑁

𝑛=1 ]
)

2

 High is desirable 

 

3. Result and discussion 
The developed RBF neural networks called RBF-GWO 

and RBF-ACO for finding pile settlement rates predicted 

have been generated and exhibited in this sector. The 

number of neurons found optimally for the hidden layer in 

both frameworks was obtained 70 (with one hidden layer). 

In this situation, the complexity and cost factors of neural 

network modeling should be effective for simulating 
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accurately what was done through the MATLAB 

environment. Figure 4 provides a scatter plot indicating the 

distribution of measured pile settlement rates in the 

KVMRT project with 70 percent and 30 percent for training 

and testing phases, respectively. 

 

Fig. 4. Measured pile settlement data in the KVMRT project 

 

Fig. 5 indicates the estimated and observed 

relationship of piles movements via the R and RMSE index 

correlation value. 

Fig. 5. The scatter plot of measurement and predictive modeling 

 

As shown in Fig. 5, the RFB-GWO has proved the 

appropriate rate for both R and RMSE marks 1.23 and 

26.78 percent higher than RFB-ACO, respectively. To 

optimize the number of neurons embedded in the hidden 

layer, GWO could have done better since the scattered 

points around the best-fit line are closer than those 
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associated with ACO. Notably, the piles related to high 

numbers were modeled close to real measurements with 

minimum errors well. This fact can be explained by 

applying 70 percent of data to train neural networks. 

In this regard, Table 3 has depicted the capability of 

modeling for each hybrid model using the VAF, R, MAE, 

OBJ, and RMSE indices (described in Table 2). The 

outcomes of both phases as the training and testing show a 

similar pattern. In the training phase, the optimization 

algorithm of GWO has acted better by comparing all indices 

with the values desirable with the results of ACO. The MAE 

index has taken the most discrepancy, with about 30 

percent in favor of GWO. While the difference in the 

outputs of VAF and R-correlation indexes has not attracted 

attention with a slight difference. Identically, all indicators 

of R, OBJ, MAE, VAF, and RMSE related to the testing 

phase for RBF- GWO have been placed at a desirable level 

compared to RBF-ACO by the maximum difference in 

RMSE as 37.4 percent. Meanwhile, the index of OBJ 

containing the error indexes of R, RMSE, MAE in both 

phases of train and test that can be seen as the 

comprehensive criterion to give a better perspective of the 

modeling process, showed that RBF- GWO serves better 

modeling with about 0.37 mm mistake in modeling pile 

settlement.  

 
Table 3. Obtained values of performance evaluators for PS modeling 

Models RBF-ACO RBF-GWO Difference (%) 

Spread rate 21.5651 68.4898  

Number of hidden layers neurons 70 70  

Assessment 

criteria 

Training phase 

R 0.9652 0.9772 1.24% 

RMSE 0.6757 0.5467 23.60% 

MAE 0.3474 0.2679 29.68% 

VAF 96.34 97.70 1.41% 

Testing phase 

R 0.9735 0.986 1.28% 

RMSE 0.6089 0.4432 37.39% 

MAE 0.3182 0.2362 34.72% 

VAF 97.31 98.52 1.24% 

OBJ 0.4189 0.3698 13.30% 

Fig. 6 tries to indicate each pile’s modeling mistakes 

rather than target values that are measured to have a good 

view of the accuracy of simulation models. As shown in Fig. 

6, there are some positions where measurements and 

modeling lines are not coincidental. Moreover, most of the 

modeling is conducted correctly, as seen in two parts of 

testing and training. This diagram has depicted where and 

to what extent gaps exist between modeling and real 

measurements. 
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Fig. 6. Showing the difference of pile settlement measured and estimated by (a) RBF-GWO and (b) RBF-ACO  

 

Fig. 7 presents a better view to analyze the 

performance of modeling. The mentioned diagram implies 

errors to reach the target for piles modeled according to the 

measured ones in terms of positive (overestimation) and 

negative (underestimation). Therefore, based on Figure 7, 

diagram (a) for RBF-GWO has shown mistakes in 

simulating pile movement that reaches the maximum of 35 

percent in the training phase. However, the error rate has 

risen to 40 percent in the testing phase. On the other side, 

RBF-ACO (diagram b) can do defined duty to model pile 

settlement with mistakes higher than RBF-GWO. For the 

training phase, the error of RBF-ACO has closely bitten 45 

percent. That this threshold has passed in the testing stage. 

But in mentioned stage the prediction error line of RBF-

ACO is flatter than RBF-GWO. 
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Fig. 7. The error of PS modeling in (a) RBF-GWO and (b) RBF-ACO 

 

Fig.

 8 indicates the normal distribution of errors for both 

RBF-GWO and RBF-ACO hybrid models. Also, the 

frequency of error classes is brought up in this figure.

Fig. 8. Normal distribution of errors in modeling for both hybrid models 

 

Interestingly, despite the fact that neural network with 

GWO has had the better performance in simulating the pile 

settlement with suitable results, the RBF-ACO has better 

error distribution with a bell-shaped normal distribution 

diagram. On the other hand, the RBF-GWO framework has 

a wide area of errors that this matter has led to the 

reduction of error histograms’ height rather than RBF-

ACO. 

 

4. Conclusion 
Piles’ Foundations have been critical projects 

requiring columns to carry loads and masses to the ground 

base. Especially, the heavy structures such as bridges and 
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tall buildings entail being surveyed in terms of any dangers 

that could be a recipe for disaster. Existing pile settlement 

as a defective feature of projects has to be analyzed to 

facilitate construction over the long. For this reason, 

appraising the pile settlement rate mathematically can 

reduce the risk of failure in mega projects. Therefore, the 

present paper aims to model the pile settlement using the 

Radial Basis Function (RBF) neural network. In this way, 

Grey Wolf Optimization (GWO) and Ant Colony 

Optimization (ACO) were used to find the optimal number 

of neurons in the hidden layer to reduce the complexity and 

cost of network calculations. To utilize hybrid models of 

RBF-GOW and RBF-ACO, pile tests and ground properties 

were obtained for Klang Valley Mass Rapid Transit 

(KVMRT) ’s transportation project in Malaysia. 

Both proposed frameworks had outstanding capability 

to appraise the dependent variable of Pile Settlement (PS), 

where the R value for the training phase was obtained on 

averagely 0.9860 and 0.9735 in the test level for RBF-GOW 

and RBF-ACO, respectively, signifies the difference of 1.28 

percent. To check the spreading of samples data adjacent to 

the best-fit line, the lower pile numbers of both frameworks 

showed the same performance, according to Fig. 7.  

To sum up, RBF-GWO could get an acceptable score 

by the indices for evaluating each strategy. Statistically, the 

RBF-GWO framework, with the desirable values of R, 

RMSE, MAE, and VAF at 0.9803, 0.5176, 0.2583, 97.992, 

outperformed than RBF-ACO with those of 0.9684, 0.6562, 

0.3386, and 96.733, respectively, that the highest 

difference is related to the MAE with 31 percent. For the 

training stage that includes 70 percent of data, RBF-GWO 

could hit the 0.9772 R-value just 1.24 percent higher than 

RBF-ACO’s performance. Finally, the holistic index of the 

OBJ evaluator, consisting of the main error and correlation 

criteria of R, RMSE, MAE indexes, proves that RBF-ACO 

and RBF-GWO have been obtained, respectively, 0.4189 

and 0.3698, with a 13.30 percent difference. To sum up, 

employing the hybrid models with desirable outcomes with 

the aid of smart software-based approaches can reduce the 

costs of physical experiments and simultaneously increase 

the accuracy of predicting mechanical features of crucial 

concrete material. 
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