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Highlights 
 

➢ Maximum dry unit weight and optimum moisture content prediction  
➢ Using multivariate adaptive regression splines for the estimation purpose 
➢ Employing different degrees of interactions of models to have precise and reliable outputs 
➢ An R2 of 0.9365 is obtained for the proposed MARS-OI-3 model in the training phase.  
➢ In both phases, the value of all criteria for MARS-OI-2 is better than MARS-OI-1. 

 

Article Info   Abstract 

Soils compaction with experimental tests is a pivotal facet in the selection of materials for earth 
constructions. Due to the time limitations and concerns of finishing resources, it is obligate to 
develop some relationships for predicting compaction parameters such as maximum dry unit 
weight (γdmax) and optimum moisture content (ωopt) from easily estimated index properties. The 

purpose is to evaluate the applicability of multivariate adaptive regression splines (MARS) for 
estimating γdmax and ωopt of lateritic soils. Furthermore, different degrees of interactions of models 

are employed to have comprehensive, precise, and trustable outputs. The outputs of suggested 
equations to estimate γdmax related to modified proctor compaction test provide proper capability 
in the modeling procedure. In the training dataset, the value of all criteria for MARS − OI − 3 is 
proper, with the value of 0.9365, 0.4146, and 93.647 for R2, RMSE, and VAF, respectively. But testing 
phase’s results are roughly complicated, where scores of MARS − OI − 3 equal to 21, bigger than 
MARS − OI − 2 (10) and MARS − OI − 4 (17). In summary, MARS − OI − 3 outperforms others, 
where can be known as the suggested equation. The outputs of suggested equations to estimate ωopt 

also provide great ability in the modeling. In both phases, the value of all criteria for MARS − OI − 2 
is proper than MARS − OI − 1. Also, scores depict that the score of MARS − OI − 2 (15) is about 
double of MARS − OI − 2 (9). So, in spite MARS − OI − 1 has justifiable usefulness in the forecasting 
outline, MARS − OI − 2 outperforms it. 
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1. Introduction 
The significance of soil compaction cannot be 

neglected, as the continued depletion of land resources 

associated with structural development has become more 

significant in the pursuit of sustainability. The 

world's populace is developing every time and exists a 

consistent requirement for the extra foundation such 

as airplane terminal runways, streets, buildings, wharves, 

dams, railroads, and so on [1]–[4]. Each of these projects, in 

the meantime, is built on soil that does not contain 
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sufficient resistance to withstand the loads coming on their 

way. In Nigeria, the normal laterite soil used for 

construction may not normally be suitable for its intended 

use. Therefore, exist a soil improvement requisite which 

compaction is one of the cheapest and the most common 

[5], [6]. 

Lateritic is known as widely improved and circulated 

air through soils which are created via in-situ weathering 

and deterioration of rocks under climatic conditions [7]. 

Expanding utilization of lateritic soil is related to its 
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simplicity of getting to, compatibility and density. The 

compaction of this soil, like other soils, raises its bearing 

capacity. It reduces the adverse adaptation of buildings 

constructed on mentioned soils and increases the slopes’ 

stability [8]. The foundations’ capacity is widely depended 

on compaction properties, where is determined by 

indicating the maximum dry weight (𝛾𝑑𝑚𝑎𝑥) of the optimum 
moisture content (𝜔𝑜𝑝𝑡) in the specified energy. 

Numerous articles have depicted the prosperous use of 

artificial intelligence-based techniques in the branches of 

engineering [9]–[16]. Experimental connections were 

suggested sometimes based on computational methods 

such as regression [17]–[20]. In addition to the fact that 

there are many factors in the compaction parameters of 

effectiveness, as proposed by [21], roughly all empirical 

connections developed from statistical methods such as 

regression might contain various deviations. However, this 

opinion does not seem to be a good reason. Among other 

works, Ardakani and Kordnaeij [21] engaged the genetic 

model usage as well as ANN for extending analogous 
connections to estimate 𝜔𝑜𝑝𝑡 and 𝛾𝑑𝑚𝑎𝑥. Zhu et al., was 

developed the SVR models for predicting the compaction 

properties of lateritic soils [22]. Other study engaged an 

evolutionary polynomial regression to suggest some models 

to estimate 𝜔𝑜𝑝𝑡 and 𝛾𝑑𝑚𝑎𝑥 [23], while lately an estimating 

algorithm extended for in-situ 𝛾𝑑 from penetrometer trials 

in chamber of calibration.  

MLP neural network was applied for precise extending 
models for 𝛾𝑑𝑚𝑎𝑥  and 𝜔𝑜𝑝𝑡 of modified soil. The improved 

artificial neural network was created for extending clear 
formulations of 𝛾𝑑𝑚𝑎𝑥  and 𝜔𝑜𝑝𝑡. The outputs indicate that 

the suggested models' accuracy is considerable in 

comparison with the observations [24]. Linear regression 

methods in logarithmic form were proposed for evaluating 
the 𝛾𝑑𝑚𝑎𝑥  and 𝜔𝑜𝑝𝑡  of the fine-grained soil. So, concluded 

system through regression analysis could be employed for 
estimating the both 𝛾𝑑𝑚𝑎𝑥 and 𝜔𝑜𝑝𝑡. For predicting 𝛾𝑑𝑚𝑎𝑥 

and 𝜔𝑜𝑝𝑡, some parameters were included in the best model 

named compaction energy, specific gravity, liquid limit, 

and also grain size [25]. Another article purposed for 

extending empirical formulas between 𝛾𝑑𝑚𝑎𝑥 and 𝜔𝑜𝑝𝑡 with 

compaction energy in logarithm form and ratio of sand for 

lateritic soils [26]. 

The objective of this article is to evaluate the 

usefulness of the regression method of the multivariate 

adaptive regression splines (MARS) for estimating the 

compaction properties of lateritic soils (maximum dry unit 
weight (𝛾𝑑𝑚𝑎𝑥) and optimum water content (𝜔𝑜𝑝𝑡)), which 

could be utilized in practical projects. Furthermore, several 

degrees of interaction are suggested to have precise and 

reliable outputs. To the estimation outline, six variables 

were taken into account as inputs, such as percent of fines 

(𝐹𝐶), gravel content (𝐺), sand content (𝑆), liquid limit (𝜔𝑙), 
plastic limit (𝜔𝑝), and plasticity index (𝐼𝑝).  

 

2. Methodology 
2.1. Description of the Dataset 

To design the estimation procedure of 𝛾𝑑𝑚𝑎𝑥  and 𝜔𝑜𝑝𝑡 

for the modified proctor compaction test, a collection of 

records was collected from the Tailings Storage Facility 

dam in Tarkwa, Ghana (Figs. 1 and 2) [27], that was 

separated into training and testing phase by proportion of 

0.75 and 0.25. The prevailing soil is lateritic observed in 

numerous locations of Africa. Fresh soils samples were 

collected from the depth of 0.3 to 2 meters during the dam 

construction. These samples were tested under particle size 

analysis [28], Atterberg limit [29], and modified proctor 

compaction tests [30]. To the modeling development, six 

parameters were entered as inputs, named percent of fines 

(𝐹𝐶), gravel content (𝐺), sand content (𝑆), liquid limit (𝜔𝑙), 

plastic limit (𝜔𝑝), and plasticity index (𝐼𝑝) [27]. The supplied 

Table 1 show the statistics of variables used. 

The relationship between inputs could be evaluated by 

the Pearson Correlation Coefficient [31]. PCC matrix is 

plotted for 𝜔𝑜𝑝𝑡 and 𝛾𝑑𝑚𝑎𝑥  in Fig. 3. A high amount could 

conclude in difficulties in interpreting the impressions of 
the parameters on the conclusions. Regarding 𝜔𝑜𝑝𝑡 PCC 

values, Fig. 3a supply a big value of the correlation between 

any two variables are rather low (i.e., lower than 0.458), 

cause that might not lead to multicollinearity problems 

[32]. Moreover, the biggest negative and positive value is 

between 𝜔𝑜𝑝𝑡 and 𝐼𝑝 at -0.814, and between 𝐼𝑝 and 𝜔𝑙 at 

0.854. Turning to 𝛾𝑑𝑚𝑎𝑥  (Fig. 3b), the largest negative and 

positive value is between 𝐹𝐶 and 𝑆 at -0.766, and between 
𝐼𝑝 and 𝜔𝑙 at 0.854.
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Fig. 1. Simplified geological map of southwest Ghana [33] 

 

Fig. 2. Site layout of the TSF dam, Tarkwa [27]  

 
Table 1. The statistical indices of the input and output variables 

Index  
Inputs Outputs 

G S FC ωl ωp Ip ωopt  γdmax 

Training data 

Minimum 0.6 11 12.9 24.4 11.8 1.08 6.7 19.08 
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Maximum 45 86.5 80.18 64 32.7 41 14.5 25.62 

St. deviation 11.9115 18.385 17.998 10.013 5.2396 10.883 1.9878 1.6448 

Average 15.642 39.331 45.0261 47.527 21.574 25.964 9.89625 22.726 

Median 11.7 38.22 43.225 47.63 21.055 28.95 9.7825 22.85 

Skewness 0.895 0.3554 0.25 -0.22 0.3157 -0.841 0.499 -0.445 

Kurtosis -0.1366 -0.805 -0.976 -0.903 -0.628 -0.214 -0.545 -0.3666 

Testing data 

Minimum 1.9 13.3 10.05 19 11 0.81 6.3 19.34 

Maximum 43.7 60.95 75.6 62.81 39.24 37.84 13.7 25.1 

St. deviation 14.265 14.776 21.017 9.899 7.374 12.103 2.059 1.681 

Average 19.0995 31.041 49.8605 46.507 21.404 25.103 9.1845 23.1875 

Median 20.5 23.75 49.4 49.6 19.25 29.785 8.7 23.7 

Skewness 0.1567 0.996 -0.5035 -0.932 1.2193 -1.058 0.9533 -1.303 

Kurtosis -1.5198 -0.286 -0.782 1.516 1.0781 -0.162 0.0635 0.769 

 

 

 

(a) (b) 

Fig. 3. PCC between the variables for: a) 𝜔𝑜𝑝𝑡, b) 𝛾𝑑𝑚𝑎𝑥 

 
2.2. Multivariate Adaptive Regression Splines 

(MARS) 

MARS is a regression method that is utilized for a large 

diversity of engineering issues, and it was defined by 

Jerome Harold Friedman [34]. Multivariate adaptive 

regression splines recognize as a non-parametric 

regression algorithm which can generate non-linear models 

and model the interplays among parameters [35]. MARS 

has been largely utilized in several scopes like hydrology 

[36], energy performance [37], ergonomics [38], 

transportation [39], geotechnical engineering [40], [41], 

building engineering [42], biological networks [43], and so 

forth since its advent in 1991 [34]. 

MARS is able to describe the practical relevance 

among the independent and dependent variables. The 

spline that recognizes as a continuous piecewise-defined 

polynomial is this algorithm’s kernel [38]. The MARS 

regression model contains two parts [35], like the testing 

and training part. In the MARS’s forward step, the 

fundamental functions are joined frequently that chosen 

from the apperceived dataset spontaneously and generate 

the biggest model with plenty of fundamental functions. 

Nevertheless, this model may be overfitted because the 

backward step is utilized to reduce the convolution by 

fundamental functions removal that leads to a little 

increment in the residual squared error [43]. The following 

equation explains the MARS model [40]: 

𝑓 (𝑥) =∑𝑐𝑖𝐵𝑖(𝑥)

𝑛

𝑖=1

 (1) 
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𝑥 An independent parameter 

𝐵𝑖(𝑥) The basis function 

𝑁 Number of terms 

𝑐𝑖 The least-square method estimation coefficient 

The fundamental functions (𝐵𝑖(𝑥)) are represented as 

bellow [42], [43]: 

𝐵𝑖(𝑥) = {
𝑥 𝑖𝑓 𝑥 ≥ 0
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2) 

The generalized cross-validation (𝐺𝐶𝑉) is used for 

specifying that fundamental functions are preoccupied in 

the model [38]. The generalized cross-validation is 

calculationally less costly than the various methods. The 

𝐺𝐶𝑉 equation is represented as below, by the division of 

mean squared residual error upon a penalty [41], [42]: 

𝐺𝐶𝑉

=  
1

𝑁
∑[𝑦𝑖 − 𝑓(𝑥𝑖)]

2

𝑁

𝑖=1

[1 −
𝑀 = 𝑑 × (𝑀 − 1)/2

𝑁
]

2

⁄  
(3) 

𝑀 the number of basic functions 

𝑁 the number of data points 

𝑑 he penalizing parameter 

(𝑀 − 1)/2  
The least-square method estimation 
coefficient 

𝑓(𝑥𝑖) the predicted value 

2.3. Performance criteria 

Some evaluators were calculated to evaluate the 

accuracy of predicting models such as Coefficient of 

determination (𝑅2), root mean squared error (𝑅𝑀𝑆𝐸), the 

variance accounted factor (𝑉𝐴𝐹), and mean absolute error 

(𝑀𝐴𝐸) (Eqs. (4)- (7)). 

𝑅2 =

(

 
∑ (𝑡𝑃 − 𝑡̅)(𝑦𝑃 − �̅�)
𝑃
𝑝=1

√[∑ (𝑡𝑃 − 𝑡̅)
2𝑃

𝑝=1 ][∑ (𝑦𝑃 − �̅�)
2𝑃

𝑝=1 ]
)

 

2

 (4) 

𝑅𝑀𝑆𝐸 = √
1

𝑃
∑(𝑦𝑝 − 𝑡𝑝)

2
𝑃

𝑝=1

 (5) 

𝑀𝐴𝐸 =
1

𝑃
∑|𝑦𝑝 − 𝑡𝑝|

𝑃

𝑝=1

 (6) 

𝑉𝐴𝐹 = (1 −
𝑣𝑎𝑟(𝑡𝑃 − 𝑦𝑃)

𝑣𝑎𝑟(𝑡𝑃)
) ∗ 100 (7) 

where, 𝑦𝑃  represent the predicted values of the 𝑃𝑡ℎ  

pattern, 𝑡𝑃 depicts the target values of the 𝑃𝑡ℎ pattern, 𝑡̅ 

shows the averages of the target values, �̅� is the averages of 

the predicted values, and 𝑃 is the number of datasets.  

 

3. Result and discussion 
3.1. Results of prediction for 𝜸𝒅𝒎𝒂𝒙 

The information of the basic functions and suggested 

relations are presented in Table 2 for the order of 

interactions (OI) of 2, 3, and 4 equations (MARS − OI −

2,MARS − OI − 3 and MARS − OI − 4). The MARS method 

different orders formulations for forecasting the 𝛾𝑑𝑚𝑎𝑥  

related to modified proctor compaction tests are supplied 

in Eqs. (8-10). Basis functions of MARS − OI − 2,MARS −

OI − 3, and MARS − OI − 4 were estimated from 3 to 40. By 

raising the order of interactions from 2 to 3, the values of 

𝑅2 changed from 0.8985 to 0.9365 but reduced to 0.9285 

by increasing the OI to 4. 

𝑀𝐴𝑅𝑆 − 𝑂𝐼 − 2: 

𝛾𝑑𝑚𝑎𝑥  =  21.863 +  0.227 × 𝐵𝐹1–0.163 

× 𝐵𝐹2 – 4.312𝑒 

−3 × 𝐵𝐹3 + 0.0222 × 𝐵𝐹4–  0.04041 × 𝐵𝐹5  

+0.07455 

× 𝐵𝐹6–0.0272 × 𝐵𝐹7 + 4.309𝑒 − 3 × 𝐵𝐹8 

(8) 

𝑀𝐴𝑅𝑆 − 𝑂𝐼 − 3: 

𝛾𝑑𝑚𝑎𝑥  =  21.778 + 0.19299 × 𝐵𝐹1 – 0.2047 ×
𝐵𝐹2–8.374𝑒 − 3 × 𝐵𝐹3 + 0.01595 × 𝐵𝐹4 +
1.396𝑒 − 3 × 𝐵𝐹5 + 3.073𝑒 − 3 × 𝐵𝐹6 +
0.019576 × 𝐵𝐹7 +  0.0265 × 𝐵𝐹8 +  2.546𝑒 −
3 × 𝐵𝐹9– 5.657𝑒 − 4 × 𝐵𝐹10– 6.4332𝑒 − 4 × 𝐵𝐹11   

(9) 

𝑀𝐴𝑅𝑆 − 𝑂𝐼 − 4: 

𝛾𝑑𝑚𝑎𝑥  =  22.54 + 0.1675 × 𝐵𝐹1– 0.159 ×
𝐵𝐹2–9.891𝑒 − 3 × 𝐵𝐹3 + 5.1528𝑒 − 3 × 𝐵𝐹4 +
1.92𝑒 − 3 × 𝐵𝐹5 + 2.367𝑒 − 2 × 𝐵𝐹6–  1.2116𝑒 −
1 × 𝐵𝐹7– 0.1336𝑒 − 1 × 𝐵𝐹8 + 1.985𝑒 − 3 ×
𝐵𝐹9–1.1632𝑒 − 4 × 𝐵𝐹10– 1.99𝑒 − 4 × 𝐵𝐹11   

(10) 
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Table 2. Simulation results of a basic system . 

BF 
Equation 

 

MARS-OI-2 (Eq. 8) MARS-OI-3 (Eq. 9) MARS-OI-4 (Eq. 10) 

BF1 𝑚𝑎𝑥(0,  𝐼𝑝 − 21.7) 𝑚𝑎𝑥(0,  𝐼𝑝 − 21.7) 𝑚𝑎𝑥(0,  𝐼𝑝 − 21.7) 

BF2 𝑚𝑎𝑥(0, 21.7 −  𝐼𝑝) 𝑚𝑎𝑥(0, 21.7 −  𝐼𝑝) 𝑚𝑎𝑥(0, 21.7 −  𝐼𝑝) 

BF3 𝑚𝑎𝑥(0, 𝐹𝐶 − 48.3) × 𝐵𝐹1 𝑚𝑎𝑥(0, 𝐹𝐶 − 48.3) × 𝐵𝐹1 𝑚𝑎𝑥(0, 𝐹𝐶 − 48.3) × 𝐵𝐹1 
BF4 𝑚𝑎𝑥(0, 𝑆 − 24.3) 𝑚𝑎𝑥(0, 48.3 − 𝐹𝐶) × 𝐵𝐹1 𝑚𝑎𝑥(0,𝜔𝑝 − 22.04) × 𝐵𝐹3 

BF5 𝑚𝑎𝑥(0,𝜔𝑙 − 18.3) × 𝐵𝐹1 𝑚𝑎𝑥(0,𝜔𝑝 − 22.04) × 𝐵𝐹3 𝑚𝑎𝑥(0, 22.04 − 𝜔𝑝) × 𝐵𝐹3 

BF6 𝑚𝑎𝑥(0,𝜔𝑝 − 22.2) × 𝐵𝐹1 𝑚𝑎𝑥(0, 22.04 − 𝜔𝑝) × 𝐵𝐹3 𝑚𝑎𝑥(0, 𝑆 − 24.3) 

BF7 𝑚𝑎𝑥(0, 24.3 − 𝑆) × 𝑚𝑎𝑥(0,𝜔𝑙 − 47.6) 𝑚𝑎𝑥(0, 𝑆 − 24.3) 𝑚𝑎𝑥(0,𝜔𝑝 − 18.3) 

BF8 𝑚𝑎𝑥(0, 37.8 − 𝑆) × 𝐵𝐹1 𝑚𝑎𝑥(0, 24.75 − 𝜔𝑝) × 𝐵𝐹2 𝑚𝑎𝑥(0, 18.3 − 𝜔𝑝) 

BF9  max (0, 38.6 − 𝜔𝑙) × max (0, 𝜔𝑝 

−24.75) × 𝐵𝐹2 

max (0, 38.6 − 𝜔𝑙) × max (0, 𝜔𝑝 

−24.75) × 𝐵𝐹2 
BF10  

𝑚𝑎𝑥(0,𝜔𝑙 − 24.4) × 𝐵𝐹4 
max (0, 48.3 − 𝐹𝐶) × max (0,𝜔𝑙 
−24.4) × 𝐵𝐹1 

BF11  𝑚𝑎𝑥(0, 24.4 − 𝑆) × 𝐵𝐹3 𝑚𝑎𝑥(0, 37.8 − 𝑆) × 𝐵𝐹4 

 

 

The performance of suggested formulations for 

estimating γdmax for modified proctor compaction test of 

lateritic soils is as below. Fig. 4 shows proper capability in 

the modeling procedure. To assess the accuracy of 

developed models, indices were computed, such 

asR2,RMSE,MAE, and VAF. Furthermore, scores were 

allocated to the criteria, where the summation of scores 

could be determined the most proper model. In the training 

data set, all indices for MARS − OI − 3 is proper compared 

to others, at 0.9365, 0.4146, 0.3484, and 93.647 

forR2,RMSE,MAE, and VAF, respectively. But, the criteria in 

the testing data set are somewhat complex. Here, scores 

could be beneficial, where the score of MARS − OI − 3 is 21, 

bigger than MARS − OI − 2 (10) and MARS − OI − 4 (17). All 

in all, although other orders of MARS have acceptable 

performance in the predicting process, MARS − OI − 3 

outperforms these equations, which can be recognized as 

the proposed equation. 
 
 

Table 3. The results of developed MARS models for γ_dmax 

Models MARS-OI-2 
MARS-OI-3 MARS-OI-4 [27] 

Number of basis function 13 24 23 

Training phase R2 0.8985 0.9365 0.9285 0.76 
 Rank for R2 1 3 2  
 RMSE  0.524 0.4146 0.4397  
 Rank for RMSE 1 3 2  
 MAE 0.428 0.3484 0.3528  
 Rank for MAE 1 3 2  
 VAF 89.8497 93.647 92.8524  
 Rank for VAF 1 3 2  

Testing phase 

 R2 0.6138 0.6537 0.7418  
 Rank for R2 1 2 3  

 RMSE  1.3315 1.2784 1.3881  

 Rank for RMSE 2 3 1  

 MAE 1.1197 1.0172 1.0589  

 Rank for MAE 1 3 2  

 VAF 52.4764 47.1751 54.6594  

 Rank for VAF 2 1 3  

Score   10 21 17  
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(a) 

 

 

(b) 
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(c) 

Fig. 4. The scatter plot between measured and predicted 𝛾𝑑𝑚𝑎𝑥, and Error distribution histogram 

 
3.2. Results of prediction for 𝝎𝒐𝒑𝒕 

The information of the basic functions and suggested 

relations are presented in Table 4 for the order of 

interactions (OI) of 1 and 2 equations (MARS − OI −

1 and MARS − OI − 2). The MARS method different orders 
formulations for forecasting the 𝜔𝑜𝑝𝑡 related to modified 

proctor compaction tests are supplied in Eqs. (11 and 12). 

Basis functions of MARS − OI − 1 and MARS − OI − 2 were 

estimated from 3 to 30. By raising the OI from 1 to 2, the 

values of 𝑅2 changed from 0.7957 to 0.8662. Moreover, 

𝑅𝑀𝑆𝐸 presents a decline from 0.8985 to 0.7272. 

𝑀𝐴𝑅𝑆 − 𝑂𝐼 − 1: 

𝜔𝑜𝑝𝑡 =  8.1287 +  0.04787 × 𝐵𝐹1 +  

0.2107 × 𝐵𝐹2–  0.1607 × 𝐵𝐹3 +  0.1476 × 𝐵𝐹4 

(11) 

𝑀𝐴𝑅𝑆 − 𝑂𝐼 − 2: 

𝜔𝑜𝑝𝑡 =  8.445 + 0.2268 × 𝐵𝐹1– 0.113 

× 𝐵𝐹2–0.0316 × 𝐵𝐹3– 4.85𝑒 

− × 𝐵𝐹4 + 8.6713𝑒 − 3 × 𝐵𝐹5 

(12) 

 
Table 4. Basis functions and related equations of regression approach for ω_opt 

BF 
Equation 

MARS-OI-1 (Eq. 11) MARS-OI-2 (Eq. 12) 

BF1 𝑚𝑎𝑥(0, 𝐹𝐶 − 53.1) 𝑚𝑎𝑥(0, 30.6 −  𝐼𝑝) 

BF2 𝑚𝑎𝑥(0, 51.48 − 𝜔𝑙) 𝑚𝑎𝑥(0,𝜔𝑝 − 23.37) × 𝑚𝑎𝑥(0,  𝐼𝑝 − 30.6) 

BF3 𝑚𝑎𝑥(0, 22.2 − 𝜔𝑝) 𝑚𝑎𝑥(0, 23.37 − 𝜔𝑝) × 𝑚𝑎𝑥(0,  𝐼𝑝 − 30.6) 

BF4 𝑚𝑎𝑥(0,𝜔𝑝 − 18.3) 𝑚𝑎𝑥(0, 41.9 − 𝐹𝐶) × 𝑚𝑎𝑥(0, 47.63 − 𝜔𝑙) 

BF5  𝑚𝑎𝑥(0, 𝐹𝐶 − 48.3) × 𝑚𝑎𝑥(0,𝜔𝑙 − 47.63) 

 

The performance of suggested formulations for 
estimating 𝜔𝑜𝑝𝑡 for modified proctor compaction test of 

lateritic soils is as below. Fig. 5 shows proper capability in 

the modeling procedure. To assess the accuracy of 

developed models, indices were computed, such as R2, 

RMSE,MAE, and VAF. Furthermore, scores were allocated to 

the criteria, where the summation of scores could be 

determined the most proper model. In both the training 

and testing phase, the value of all criteria for MARS − OI −

2 is better than MARS − OI − 1, with a small exception of 

VAF in the testing phase. For example, in the training 

phase, the value of 𝑅2, RMSE, MAE, and VAF are 0.8662, 

0.7272, 0.5821, and 86.617 for MARS − OI − 2, respectively, 

better than their values for MARS − OI − 1. Also, the same 

trend persists in the testing dataset, with the exception of 

VAF. As well, summated scores show that the score of 

MARS − OI − 2 (15) is roughly double than MARS − OI −

2 (9). All in all, although MARS − OI − 1 has acceptable 
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performance in the predicting process, MARS − OI −

1 outperforms this equation, which can be recognized as the 

proposed equation.   

The performance of suggested formulations for 

estimating γdmax for modified proctor compaction test of 

lateritic soils is as below. Fig. 4 shows proper capability in 

the modeling procedure. To assess the accuracy of 

developed models, indices were computed, such as R2, 

RMSE,MAE, and VAF. Furthermore, scores were allocated to 

the criteria, where the summation of scores could be 

determined the most proper model.  

 
Table 5. The results of developed MARS models for ω_opt 

Models MARS-O1 MARS-O2 [27] 

Number of basis function 4 9 

Training phase R2 0.7957 0.8662 0.707 

 Rank for R2 1 2  

 RMSE  0.8985 0.7272  

 Rank for RMSE 1 2  

 MAE 0.7126 0.5821  

 Rank for MAE 1 2  

 VAF 79.5673 86.6172  

 Rank for VAF 1 2  

Testing phase     

 R2 0.6991 0.7057  

 Rank for R2 1 2  

 RMSE  1.3705 1.3615  

 Rank for RMSE 1 2  

 MAE 1.0908 1.0692  

 Rank for MAE 1 2  

 VAF 67.5102 64.6733  

 Rank for VAF 2 1  

Score   9 15  

 

  

(a) 
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(b) 

Fig. 5. The scatter plot between measured and predicted 𝜔𝑜𝑝𝑡, and Error distribution histogram 

 
 

 
4. Conclusions 

The objective of this article is to evaluate the 
usefulness of the regression method of the multivariate 
adaptive regression splines (MARS) for estimating the 
compaction properties of lateritic soils (maximum dry unit 
weight (𝛾𝑑𝑚𝑎𝑥) and optimum water content (𝜔𝑜𝑝𝑡)), which 

could be utilized in practical projects. Furthermore, several 
degrees of interactions are suggested to have precise and 
reliable outputs. The main results are as follows: 

The performance of suggested formulations for 
estimating γdmax for modified proctor compaction test of 
lateritic soils shows proper capability in the modeling 
procedure. In the training data set, all indices for MARS −
OI − 3 is proper compared to others, at 0.9365, 0.4146, 
0.3484, and 93.647 for R2, RMSE, MAE, and VAF, 
respectively. But, the criteria in the testing data set are 
somewhat complex. All in all, although other orders of 
𝑀𝐴𝑅𝑆 have acceptable performance in the predicting 
process, MARS − OI − 3 outperforms these equations, 
which can be recognized as the proposed equation. 

The performance of suggested formulations for 
estimating 𝜔𝑜𝑝𝑡 for modified proctor compaction test of 

lateritic soils shows proper capability in the modeling 
procedure. In both the training and testing phase, the value 
of all criteria for MARS − OI − 2 is better than MARS − OI −
1, with a small exception of VAF in the testing phase. As 
well, summated scores show that the score of MARS − OI −
2 (15) is roughly double than MARS − OI − 2 (9). All in all, 
although MARS − OI − 1 has acceptable performance in the 
predicting process, MARS − OI − 1 outperforms this 
equation, which can be recognized as the proposed 
equation. 
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