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Highlights 
 

➢ A rich dataset of pile settlements is gathered from various kinds of literature. 
➢ A pre-process was implemented to prepare the dataset. 
➢ A robust model is developed based on support vector regression. 
➢ The robustness of the model improved by coupling the model with Henry’s gas and particle swarm optimization algorithms. 

 

Article Info   Abstract 

Ensuring constructional projects are safe, like stacked structures, requires consideration to 
immunize structures over the period. Pile settlement (PS) is an important project problem and is 
receiving a lot of attention to prevent failure before construction starts. Several items for estimating 
pile motion can help understand the project's perspective during the loading phase. Most intelligent 
strategies for the mathematical calculation of pile movement are used in PS simulations. Therefore, 
in present article, a developed framework operating support vector regression (SVR) together with 
Henry's Gas Solubility Optimization (HGSO) and Particle Swarm Optimization (PSO) was 
considered for accurate pile motion calculation. The usages of optimizers were to tune some internal 
settings of SVR. The Kuala Lumpur transportation network was selected to study the movement of 
piles based on the land rock characteristics using the developed SVR-HGSO and SVR-PSO 
structures. Five metrics were used to evaluate the performance of each model. The main objective 
of this research is to evaluate the artificial inteligent approach in form of two developed models in 
simulating the pile settlement rates using hybrid optimized frameworks. The R2 of modeling both 
were obtained similarly at 0.99 level. While the RMSE of SVR-PSO appeared more than two-fold of 
SVR-HGSO, 0.46 and 0.29 mm, respectively. Also, test phase results showed the better 
performance of SVR-HGSO with an MAE index of 0.278, which is 57.10% lower than the other one. 
The OBJ proved accurate modeling by SVR-HGSO calculated at 0.283mm level. 
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1. Introduction 
Several studies carried out to calculate the response of 

piles to feasible axial loads are discussed in lectures with 

the help of related studies [1,2]. Existing knowledge of how 

piles respond under load has led to improvements in many 

strategies that researchers can use to evaluate pile motion. 

Several researchers in this field referred to the strategies 

mentioned at the time, especially studies such as [3,4]. 

 
* Corresponding Author: Saravana Kumar, M 
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Mentioned methods range from calculation methods in an 

easy way, using analytical and practical solutions, even by 

utilizing finite element or numerical difference solutions 

[5–7]. Empirically, simultaneously designing the premise 

of methods for the pile to be primarily based totally in a 

layer underneath the soil followed with the aid of a much 

less compressible layer [8–11]. 
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Therefore, the compression layers under the piles were 

generally accepted as this is an obvious design issue and 

risk as it can significantly increase pile settlement [12]. One 

study [13] suggests an additional subsidence rate due to 

beneath layers, which may be important to pile geometry 

and soil physical properties, depending on the limited 

analysis. Research into this seemingly, the obvious classic 

question is limited, and manual calculations and methods 

that appear analytically are often not applicable to existing 

individual soil layers. 

In addition, another study suggested a method to 

analyze the mobility of piles and introduce a theoretical 

function for the study of earth pressure coefficient [14,15]. 

All references primarily evaluate the motion of piles, but 

anyone is utilized without a ground reflection model 

directly. Also, solutions are known as artificial neural 

networks (ANN) and properly branched machine learning 

is the result of a lot of research, Lee and Lee [16], Che et al. 

[17], Liu et al. [18], Hanna et al. [19], and Shanbeh et al. 

[20]. In several studies, training data augmentation was 

chosen to generate models capable of predicting pile 

bearing capacity and movement tests that data collection 

selected training samples with respect to neural networks 

in a series of dynamic field studies. One research that 

operated ANN tried to calculate the settlement 

characteristics of piles socketed in rocks. That dataset for 

the training phase was collected via the reports of actual 

piles data [21]. 

Regression methods have been widely used, such as 

multivariate spline adaptive regression, Gaussian trend 

regression, and minimax probability machine regression 

[22–25,10,26,27]. Solving problems in geotechnical fields 

is examined through gene expression programming (GEP) 

[26,28–31]. This method of determining the axial bearing 

capacity of piles has been studied in several types of 

research [28]. A new configuration according to GEP has 

been progressed [29]. Algorithms performed other 

research to predict the UCS of rocks [31], including support 

vector machines, GEP, and multilayer perceptrons. The 

ability of support vector machines to simulate the motion 

of stratified sedimentary rock masses is quite acceptable 

[32]. Actually, the support vector machine provides more 

accurate and reliable calculation outcomes. Moreover, in 

other studies, this method was used to evaluate the bearing 

capacity of piles [33,34]. Input data included empirical or 

field-measured soil properties, foundation sizes, and pile 

samples. 

The main aim of the present paper is to appraise the 

pile settlement rates socketed in rocks by applying support 

vector regression (SVR) to develop a practical pile 

movement model. In this regard, this article attempted to 

combine, promote, and explore relevant models with 

optimization algorithms and SVR machine learning to 

estimate pile settlement rates based on in-situ data. SVR 

used algorithms including Henry's Gas Solubility 

Optimization (HGSO) and Particle Swarm Optimization 

(PSO) to reach these goals to find optimal coefficient values 

related to the models and improve simulation accuracy. 

There are many references using SVR and optimization 

algorithms in literature [35–40]. Practical data to analyze 

pile motion and soil attributes were gathered from the 

Kuala Lumpur Transport Klang Valley Rapid Network 

(KVMRT) project in Malaysia. 

The frameworks proposed as SVR-HGSO and SVR-

PSO attempt to simulate the pile settlement rates by the 

dataset. Generally, developing boosted models such as 

hybrid and ensemble ones can lift the capabilities of them 

in tunning the main predicting models while some experts 

have great tendency for hybrid than ensemble [41]. In fact 

using artificial intelligent-based techniques are getting 

common in civil engineering fields to save invests, energy, 

at the same time, increasing the accuracy of predictions. In 

this regard, the parameters of the ratio of pile length to its 

diameter, the UCS explored in rock, the pile loads, the ratio 

of pillar length beneath the soil to the length of the pile in 

the rock, as well as the NSPT parameters, penetration test, 

were opted to examine the pile settlement in the project of 

KVMRT [42]. On the other hand, investigating the 

reliability of the models proposed requires the evaluators 

that in the present study, the criteria of R, OBJ, MAE, and 

RMSE as error indices were used to examine the 

performance of models. 

2. Materials and Methodology 
2.1. Initial dataset providing 

The Kuala Lumpur's transport lines to control the 

congestion, named Klang Valley Rapid Transit System 

(KVMRT), including a lot of piles for supporting bridges, 

and is chosen for a research area ofthis study. Fig. 1 shows 

the position of KVMRT in Malaysia. 
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Fig. 1. Transport project of KVMRT location 

 

Several piles are embedded in different rocks, such as 

phyllite, granite, limestone, and sandstone. The 96 profiles 

of the granite-based pile in the present research were 

gathered to be analyzed. Granites of the San Trias type are 

found within this area. Subsoil data and materials were 

acquired from the pile-laying site to identify general 

geological features. According to the structural results of 

the basement, it is composed of residual rock. According to 

the collected data, the bedrock depth ranges from 70 cm 

underground to over 1400 m. In this regard, the sampling 

process, related information, and excavation records 

between piles in the survey area are described. 

1- Minimum and maximum UCS values based on 

ISRM are 25 MPa and 68 MPa, alternatively. [43] 

2- Observed rock masses range from averagely 

weathered rocks to heavily weathered rocks. 

3- Subsoil materials are observed in most areas with 

NSPT values exceeding 50 below per 300 mm at the ground 

depths of 7.5 to 27.0 m. 

4- According to historical data up to a depth of 16.5 

MPa, strongly weathered soils are observed. The main soil 

type consists of hard sand silt with minimum and 

maximum NSPT of 4 and 167 lower per 300 mm 

alternatively. 

Generating the best data set with efficient dependent 

items has been the first phase to create a framework as 

being predictive. The indication of the most important 

factors affecting the model's results is essential. The 

abovementioned tests were done using a file analysis 

setting from Pile Dynamic, Inc. It is mentioned earlier that 

the length and diameter of piles are parameters that affect 

the magnitude of pile settlement. Thus, parameters are 

chosen to analyze the effect of pile geometry: the ratio of the 

pile length in the soil layer to the pile length in the rock 

layer (Ls/Lr) and the ratio of the total pile length to pile's 

diameter (Lp/D). In addition, the model input variable of 

UCS was selected for the prediction of pile settlement due 

to the influence of UCS. The NSPT was also considered an 

input representing the state of the soil layer. 

Further, the pile load directly affects the settlement 

amount thus, the ultimate potential bearing (Qu) of the pile 

was considered. Overall, five variables were selected as 

inputs for evaluating pile settlement (PS). Table 1 shows the 

inputs and output of the model selected in the study, plus 

their amplitude. Also, the bar chart of the inputs and target 

(PS) are illustrated in Fig. 2 with the normal distribution 

curve of the dataset. 

 

 

Characteristics of 96 piles constructed by granite rock-

based have considered in this research. The the San Trias 

type of granite rock was seemed in the area. Data and 

beneath the ground materials at the pile site covered the 

dominating geological properties. The beneath soil layers 

are collected from remaining pieces of rocks as in the 

results. Accordingly, in the data gathered, the bed rock 

depth is estimated to be in a span of 70 cm to more than the 

threshold of 1400 m below. Besides, the process of 

sampling and information of socketed pillar have brought 

in the lines as follow: 

a) The mass of observed rocks among moderately to 

extremely weathered ones 

b) Undermost and top rates of UCS according to the 

ISRM parameter, respectively, at the level of 25 and 

68 Mega Paskal, [41]. 

c) Log data of bore in the 16.5 meters, extremely 

weathered soil, and the dominant sort of soil is 

made up of mostly mud including sand plus a 

atleast and atmost 4 and 167 of  𝑁𝑆𝑃𝑇  lower per 300 

mm, respectively.   

d) A large region under the surface depth in the range 

between 7.5 and 27.0 meters, underground context 

with 𝑁𝑆𝑃𝑇  rate further than 50 deep per 300mm. 

Preparing initial information with entering inputs 

seems the primitive phase for estimating the outputs. 

Determining the factors impacting the model output is 

compulsory to the proposed framework. The empirical 

expriments abovementioned were done by Dynamic of Pile, 

Inc, applying a pile analysis. It was also previously noted 

that length of pile and crosssection pile diameter are the 

variables for the forcasting of pile movement quantity in the 

pile movement. Therefore, both variant, called the length of 

pile below the soil to length of pile under the rock 

proportion (𝐿𝑠/𝐿𝑟), and the total length of pile-to-pile 
diameter (𝐿𝑝/𝐷) got opted to investigate the status of 

geometryof pile on settlement. The magnitude of 𝑁𝑆𝑃𝑇  was 
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similarly was enrolled entring input to demonstrate the 

status of the soil. Further, the parameter of UCS was 

considered as input of the model for pillar movement 

estimation. In addition, the load over pile has a straight 

effect on the pile movement.Therefore, the last bearing 

capacity of pile (𝑄𝑢) got recognized entering data. variables 

got opted for appraising pile settlement (PS). The entering 

data and outcomes from the model in this study, align with 

revealed ranges, have being indicated by Table 1. The 

graphs of entering data and target (PS) have been brought 

through Fig. 2 as well.

 
 
 
 
 
 

Table 1. The dataset used in models, inputs, and target values 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Item Sy

mbol 

U

nit 

Max

. 

Mi

n. 

S. 

deviation 

Aver

age 

The ratio of pile length to 

diameter 

𝐿𝑝/𝐷 - 31.5

6 

4.

33 
6.55 

15.3

7 

Pile settlement PS m

m 

20.0

95 

4.

494 
3.690 

10.9

9 

Uniaxial compressive 

strength 

U

CS. 

M

Pa 

68.4

89 

25

.324 
12.442 

43.4

11 

Test of standard 

penetration  

N - 166.

42 

2.

92 
59.08 

80.0

3 

Ultimate potential 

bearing  

𝑄𝑢 K

N 

427

01 

12

409 
803 

245

4 

Soil length to socket 

length ratio 

𝐿𝑠/𝐿𝑟  - 31.7

14 

0.

286 
6.562 

7.06

3 
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Fig. 2. The input and target bar charts: a) L_p/D and L_s/L_r, b) N_SPT and UCS, c) Q_u and PS 

 

2.2. Support vector regression, SVR 

The machine learning technique of SVR was presented 

to categorize the issues of regression [44]. Support vector 

regression implied the regression sort of support vector 

machine, which utilizes an area of tolerance (ε) for 

outlining regression. The categorizing regression classes in 

the approach SVR are used to create an optimized hyper-

plane. SVR has belonged via the learning techniques 

(supervised) to find responses for issues related to 

regression and the working out the following function[45]. 

𝑚𝑖𝑛𝑤,𝑏 =
1

2
‖𝑤‖2 + 𝐶 ∑ (𝜉𝑖 + 𝜉𝑖

∗)
𝑚

𝑖=1
 

𝑠. 𝑡.    {

𝑦𝑖 − (𝑤𝑇𝑥𝑖 + 𝑏) ≤ 𝜀 + 𝜉𝑖

(𝑤𝑇𝑥𝑖 + 𝑏) − 𝑦𝑖 ≤ 𝜀 + 𝜉𝑖
∗

𝜉𝑖 , 𝜉𝑖
∗ ≥ 0

} 

(1) 

In this equation, 𝜉, 𝐶, 𝑤,𝑏, and 𝜀, represent the amount 

of boundary violation, regularizing variables in the queue, 

the factor weight, bias, and the rate of deviation from the 

hyper-plane alternatively. The function of fitness 

encompasses 2 terms: 

 

  
1

2
 ‖𝑤‖2 (2) 

𝐶 ∑ (𝜉𝑖 + 𝜉𝑖
∗)

𝑚

𝑖=1
 (3) 

To enhance the area between the samples and the 

hyperplane, Eq. (2) was proposed, and conserving the 

interval between samples with the hyperplane via a unit Eq. 

(3) played the role of an adjusting tool. The suitable 

magnitudes of 𝑤 and 𝑏 were collected over working out the 

function as the target for a hyperplane. In the present 

research, the objective function of the quadratic type is used 

to generate desirable outcomes [46]. The SVR's essential 

duty is to solve the determinative parameters at optimal 

levels:𝑠𝑖𝑔𝑚𝑎, 𝜀, and 𝐶. To find these parameters, diverse 
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frameworks have been employed, wherein optimization 

algorithms in the present article as HGSO and PSO were 

joint with SVR to appraise the parameters optimally. The 

required𝑠𝑖𝑔𝑚𝑎,𝜀, and 𝐶 for dataset guide to coefficients at 

maximum levels. 

 
2.3. Particle Swarm Optimization, PSO 

Particle Swarm Algorithm (PSO) has been considered 

a population basis method. The solution is created over the 

relationship feedback of separate animal groups. Firstly, 

the present solution was developed via Kennedy et al. 

(1995) [47] as well as widely were undertaken by several 

studies [48–51]. For mentioned solution, the velocity and 

location seem to be the main population parameters for 

regulation. Ranking tools scored either component’s best 

location or the overall best solution as the global best 

solution. The velocity and location of particles are upgraded 

in iterations to get the maximum number of iterations. Eq. 

(4) and (5) upgrade the location and velocity. 

𝑃. 𝑣𝑖𝑗
𝑛𝑒𝑤 = 𝑊𝑃. 𝑣𝑖𝑗

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 + 𝐶1𝑟1(𝑃. 𝑝. 𝑏𝑒𝑠𝑡𝑖𝑗
𝑛𝑒𝑤-

𝑃. 𝑝𝑖𝑗
𝑐𝑢𝑟𝑟𝑒𝑛𝑡)+𝐶2𝑟2(𝐺𝑙𝑜𝑏𝑎𝑙. 𝑏𝑒𝑠𝑡𝑖𝑗

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 −  𝑃. 𝑝𝑖𝑗
𝑐𝑢𝑟𝑟𝑒𝑛𝑡) 

(4) 

 𝑃. 𝑝𝑖𝑗
𝑛𝑒𝑤 =  𝑃. 𝑝𝑖𝑗

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 + 𝑃. 𝑣𝑖𝑗
𝑛𝑒𝑤  (5) 

Wherein 𝐶1 plus 𝐶2 denote, respectively, the local and 

global learning acceleration factors. 𝑊 show the coefficient 

inertia. The velocity and the location of the particle are 

shown by 𝑃. 𝑣 and P. 𝑝. The parameters of 𝑟1 and 𝑟2 as 

random numbers are between [0 to 1]. All the swarms' 

appropriate solutions are denoted by 𝑙𝑜𝑏𝑎𝑙. 𝑏𝑒𝑠𝑡 . The 

mechanism of search in this algorithm is presented in Fig.3. 

 

Fig. 3. Search mechanism of Particle Swarm Optimization 

 
2.4. Henry's Gas Solubility Optimization, HGSO  
Henry's gas solubility algorithm (HGSO)defines the 
maximum dissolved solute in a certain solvent value at 
assumed pressure and temperature levels [40]. Over the 
law, demonstrating the low-soluble gases solubility in a 
specific liquid is possible. The pressure and temperature 
seem efficient items of solubility capacity. The gas 
solubilities reduce with the incremental temperature 
variable, whereas the interaction is defined straight for 
dissolved solids. For pressure, any increase in it causes 
solubility enhancement [52].  In one study [53], the 
HGSO algorithm was introduced to consider the gases 
and their solubility, which the main principles are 
presented in the following. 

i) Defining the location and amount of gases 

(producing initial population). 

ii) Generating the clusters of population basis for 

the characteristics of the gases. 

iii) Specify the clusters' costs, then select and score 

the best one to specify the best conditions. 

iv) Upgradig the Henry coefficients. 

𝐻𝑗(𝑡 + 1) = 𝐻𝑗(𝑡) × 𝑒
(−𝐶𝑗(

𝑇𝜃−𝑇(𝑡)

𝑇(𝑡)×𝑇𝜃))

 
(6) 

𝑇(𝑡) = 𝑒
(

𝑡
𝑖𝑡𝑒𝑟

)
 (7) 

Wherein the parameter of 𝐻𝑗 is the Henry coefficient 

of 𝑗 cluster. 𝑡 And 𝑖𝑡𝑒𝑟 denote the temperature and 

iteration number in the queue. 𝑇𝜃  And 𝐶𝑗 represent the 

fixed and random number of zero to one, respectively. 

v) Updating the solubility by Eq. (8). 

𝑆𝑖,𝑗(𝑡) = 𝐾 × 𝐻𝑗(𝑡 + 1) × 𝑃𝑖,𝑗(𝑡) (8) 

https://en.wikipedia.org/wiki/Biogeography-based_optimization
https://en.wikipedia.org/wiki/Biogeography-based_optimization
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In which, 𝑆𝑖,𝑗  and 𝑃𝑖,𝑗(𝑡) shows the gas solubility and 

the pressure 𝑖 of 𝑗 cluster, alternatively, as well as𝐾, a fixed 

number. 

i) Finally, the first location of the population is 

upgraded by the Eq. (9) and (10). 

 

𝑋𝑖,𝑗(𝑡 + 1) = 𝑋𝑖,𝑗(𝑡) + 𝐹 × 𝑟 × 𝛾 

× (𝑋𝑖,𝑏𝑒𝑠𝑡(𝑡) − 𝑋𝑖,𝑗(𝑡)) + 𝐹 × 𝑟 × 𝛼 

× (𝑃𝑖,𝑗(𝑡) × 𝑋𝑏𝑒𝑠𝑡(𝑡) − 𝑋𝑖,𝑗(𝑡)) 

 

(9) 

𝛾 = 𝛽 × 𝑒
(−

𝐹𝑏𝑒𝑠𝑡(𝑡)+𝜀
𝐹𝑖,𝑗(𝑡)+𝜀

)
+ 𝜀 

 

(10) 

Wherein the variable 𝑋𝑖,𝑗, 𝑋𝑖,𝑏𝑒𝑠𝑡 , 𝑋𝑏𝑒𝑠𝑡, 𝐹𝑏𝑒𝑠𝑡, 𝐹𝑖,𝑗, 𝑟, are 

the position of gas 𝑖 in 𝑗 cluster, the best gas in 𝑗 cluster, the 

best gas in the population, the best cost in the population, 

gas 𝑖 in cluster 𝑗, a random number in zero to one, 

respectively. The parameters of 𝛼, 𝛽, and 𝜀 are fixed 

numbers that 𝛼 and 𝛽 is 1 and 𝜀 is 0.05. The variable of 𝛾 

also shows the capability of gases interaction. 

vi) The number of worst-cost gases is computed to 

skip trapping in local minimums. 

 

𝑁𝑤 = 𝑁 × (𝑟𝑎𝑛𝑑(𝐶2 − 𝐶1) + 𝐶1) (11) 

That 𝑁 denotes population. 𝐶1 and 𝐶2Constant, 

respectively, equal to 0.1 and 0.2. 

vii) The location of the worst-gas is upgraded in Eq. 

(12). 

 

𝐺𝑖,𝑗 = 𝐺𝑀𝑖𝑛(𝑖,𝑗) + 𝑟 × (𝐺𝑀𝑎𝑥(𝑖,𝑗) − 𝐺𝑀𝑖𝑛(𝑖,𝑗)) (12) 

Wherein the variable of 𝐺𝑖,𝑗 shows the location of gas 𝑖 

in cluster𝑗. And the variables of 𝐺𝑀𝑎𝑥  and 𝐺𝑀𝑖𝑛 show the 

maximum and minimum boundaries, alternatively. 

 
2.5. Criteria for evaluation of developed SVR-

HGSO and SVR-PSO 

The criteria for evaluating models' performance have 

been brought up in Table 2.

 
Table 2. Indices employed for the examination of models 

 

 

 

 

 

 

 

 

In the abovementioned relations, 𝑝𝑁  represents the 

magnitude of PS predicted; 𝑡𝑛 shows the 𝑛𝑡ℎ target value; 𝑡̅ 

is the measured averaged data; 𝑝̅ play the role of the 

averaged target values that are predicted. Moreover, the 

variables of the ntraining and ntesting denote the collected 

number of pile relevant steps of train or test.  

 
2.6. Designing the hybrid SVR-HGSO and SVR-

PSO models 

Coupling the SVR including with arbitrary kernels 

were defined using optimization algorithms of to find the 

optimal rates of internal parameters of predictor model 

containing C, ε, and ξ. Henry's Gas Solubility Optimization 

(HGSO) and Particle Swarm Optimization (PSO). 

3. Results and discussions 
Results of SVR, as the models of SVR-HGSO, and SVR-

PSO, which are developed machine learning techniques for 

Indicator Symbolism Equation status 

Pearson's 

correlation 

coefficient 

R2 (
∑ (𝑡𝑛−𝑡̅)(𝑝𝑛−𝑝̅)𝑁

𝑛=1

√[∑ (𝑡𝑛−𝑝̅)2𝑁
𝑛=1 ][∑ (𝑝𝑛−𝑝̅)2𝑁

𝑛=1 ]

)2 High value is 

desirable 

Variance account 

factor 

𝑉𝐴𝐹 
(1 −

𝑣𝑎𝑟(𝑡𝑛 − 𝑦𝑛)

𝑣𝑎𝑟(𝑡𝑛)
) ∗ 100 

High value is 

desirable 

Aggregated 

statistical 

parameter of the 

RMSEs, MAEs, 

and R2 

OBJ 
(

𝑛𝑡𝑟𝑎𝑖𝑛 − 𝑛𝑡𝑒𝑠𝑡

𝑛𝑡𝑟𝑎𝑖𝑛 + 𝑛𝑡𝑒𝑠𝑡

)
𝑅𝑀𝑆𝐸𝑡𝑟𝑎𝑖𝑛 + 𝑀𝐴𝐸𝑡𝑒𝑠𝑡

𝑅𝑡𝑟𝑎𝑖𝑛
2 + 1

+ (
2𝑛𝑡𝑟𝑎𝑖𝑛

𝑛𝑡𝑟𝑎𝑖𝑛 + 𝑛𝑡𝑒𝑠𝑡

)
𝑅𝑀𝑆𝐸𝑡𝑒𝑠𝑡 − 𝑀𝐴𝐸𝑡𝑒𝑠𝑡

𝑅𝑡𝑒𝑠𝑡
2 + 1

 

The low value is 

desirable [54] 

Mean absolute 

error 

MAE 1

𝑁
∑|𝑝𝑛 − 𝑡𝑛|

𝑁

𝑛=1

 
The low value is 

desirable 

Root mean 

squared error 

RMSE 

√
1

𝑁
∑(𝑝𝑛 − 𝑡𝑛)2

𝑁

𝑛=1

 

The low value is 

desirable 
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predicting pile settlement rates, were obtained, and they 

are presented in this section. So, modeling intricacy and 

costs are taken into account, which entails increasing the 

accuracy of the PS estimation, and mentioned items must 

be figured out considering the optimizers used in this study. 

Simulations are performed in MATLAB. A detailed diagram 

of the measured pile settlement ranges for the project used 

as a study area, KVMRT, is presented in Fig. 4, wherein 70% 

and 30% of collected data were entered in terms of, 

respectively, training and testing phases. 

 

 
Fig. 4. Measured settling piles data of KVMRT project 

 

SVR-HGSO simulation was performed to estimate the 

settlement rate of each pile. Those outcomes are shown in 

Fig. 5. Generally, the estimation process was performed in 

the desired way defined by the indexes of RMSE, and R2 was 

obtained 0.288 and 0.997 mm. Also, the best-fit trendline 

indicates the corresponding modeling accuracy near the 

dotted bisector, overestimating for settling piles around the 

11 mm and underestimating relevant values above this. The 

best-fit trendline slant of 0.94 also shows proper modeling 

using the optimization algorithm of HGSO. 

 
Fig. 5. The SVR-HGSO predicted and measurement pile motion 

Similarly, the SVR-PSO outcomes are shown in Fig. 6. 

The estimation operation is carried out in the desired way, 

clearly defined by the RMSE and R2 with 0.462 and 0.992 

mm. Also, the suitable trendline represents the 

corresponding simulation accuracy near the dotted 

bisector, overestimating the settling piles around 11 mm 

and underestimating PS values above this magnitude. The 

best-fit trendline slant of 0.94 also shows proper modeling 

using the optimization algorithm of PSO. 

 
Fig. 6. The SVR-PSO predicted and measurement pile motion 

According to Fig. 5 and 6, in comparison with each 

other, the model of SVR-HGSO acted by better values of 

RMSE and R2 than SVR-PSO as being 60.71% and 0.52%, 

respectively. In optimization progress, the HGSO model 

was fulfilled fine, as seen from the scattered points near the 

fitting line compared to points in PSO. Especially the high 

number of piles was considered near the in-situ 

measurement and the minimum error. Such an event can 

be discussed in that 70 percent of collected information is 

applied to train the model. 

Table 3 shows the simulation functionality for each 

model with the criteria of R2, RMSE, MAE, OBJ, and VAF. 

The training and test results indicate the same rates for R2. 

The HGSO optimizer outperformed better than PSO for the 

training phase, which is definite via error criteria. However, 

the VAF shows the identical performance for both models 

with 0.10 and 0.12 percent difference in training and testing 

phases, MAE, RMSE, and OBJ are indicating the 

remarkable discrepancy for modeling the pile settlement. 

For the training phase, the RMSE index has indicated a 

great difference of 60.36 %, which is true for the remaining 

indexes. MAE metric also indicates the large gap of 57.41% 

between the two proposed models in favor of SRV-HGSO 

with the value of 0.283mm. Identically, the OBJ index 

showed that SRV-PSO with 0.445mm error had appraised 

the PS values with low-quality magnitudes, while HGSO 

has gained the 0.284mm as the mistake rate for the 

abovementioned purpose. 

 
Table 3. Results of models' assessment 

 SVR-PSO SVR-HGSO Difference (%) 
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For a better view, Fig. 7 has exhibited the difference of 

modeling two frameworks by dividing the PS rates 

estimated by SVR-PSO and SVR-HGSO. As shown in Fig.7, 

there are many times in the diagram that the levels higher 

or lower than zero line are touched for PS values 

calculating. While the outstanding difference in error 

criteria of Table 3 could lead us to understand that the SVR-

HGSO has modeled the PS values with a so much difference 

rather than SVR-PSO. The little scale of error, such as 0.1 

millimeter in pile settlement, is not the reason for the large 

distance in the results of models. That Fig. 7 proves this fact 

with the nearly symmetric error condition.

 
Fig. 7. The discrepancy in PS values computed by SVR-PSO and SVR-HGSO 

 

To get a definite idea of the accuracy in the simulation, Fig. 

8 wants to show the simulation error for each pile 

compared to the values as targets. With Fig. 8, multiple 

cases are observed wherein the measured values and those 

of proposed models do not match. As can be realized in both 

testing and training phases, much of the simulation is done 

right. This figure shows which pile and how significant the 

deviation exists between the model and the in-situ data. 

Criteria used Train step R
2 

0.99 0.996 0.61% 

R

MSE 

0.463 0.289 60.36% 

M

AE 

0.445 0.283 57.41% 

V

AF 

99.88 99.975 0.10% 

Test step R
2 

0.995 0.998 0.32% 

R

MSE 

0.461 0.285 61.53% 

M

AE 

0.438 0.279 57.10% 

V

AF 

99.849 99.973 0.12% 

                                                                       OBJ 0.445 0.284 56.67% 
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Fig. 8. PS simulated and measured modeling with: (a) SVR-HGSO and (b) SVR-PSO 

 

The SVR-HGSO (a) was simulated adjacent to the field 

measurements seen in the figure. However, for piles 

number 24 and 25, the discrepancy between measurement 

and modeling is greater than other points. In the same way, 

this story works for SVP-PSO (b). The simulation accuracy 

is better improved by passing the dotted line as the 

boundary of the test and training phases. 

Fig. 9 tries to enlarge the gaps of PS magnitudes modeled 

and measured in Fig.8. Practically, Fig. 9 represents the 

error in goal achievement for the simulated piles as to be 

overestimated (positive) or underestimated (negative). 

Therefore, based on Fig. 9 (a), when SVR-HGSO models the 

movement of the pile in the training stage, it can be seen 

that the errors all over the plot exist with a high value of 

11percent. Also, this matter runs similarly for the test stage, 

and there is no constant error distribution pattern. And 

SVR-HGSO (b) performed an identical operation over 

simulating settlement of pile associated with a high rate 

error of 6.7 percent. 
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Fig. 9. The PS estimated values against the errors in, (a) SVR-PSO, and (b) SVR-HGSO 

 

The present section indicates the normal error 

distributions of developed models. Fig. 10 monitors the 

distribution of errors according to their count plus the 

curve of its normal distribution for SVR-PSO and SVR-

HGSO. In this regard, there is no harmonic error 

distribution for both models. That accumulation of errors 

around the zero point has led to creating a flat normal 

distribution error curve. The concentration of the SVR-

HGSO model is better distributed as near-zero than the 

other one with a flatter curve. To sum up, the HGSO has 

performed fine instead of PSO based on the indicators and 

diagrams shown in this section. 

 

 
Fig. 10. Error distribution in SVR-HGSO model 

 

 
4. Conclusions 

Ensuring constructional projects are safe, as stacked 
structures, requires consideration to immunize structures 
over the period. Pile settlement is an important project 
problem and is receiving a lot of attention to prevent failure 
before construction operations. Several items for 
estimating pile motion can help understand the project's 
perspective during the loading phase. Most smart strategies 
for the mathematical calculation of pile movement are used 
in PS simulations. Thus, in this study, we proposed to 
operate support vector regression together with henry's gas 
solubility optimization and particle swarm optimization for 
accurate pile motion calculation. The Kuala Lumpur 
transportation network was selected to study the 
movement of piles based on the land rock characteristics 
using the developed SVR-HGSO and SVR-PSO structures. 
With five metrics used in evaluating the performance of 

each model, we will be able to reduce the cost and energy to 
be aware of any pile motion to avoid heavy failure. Based on 
indicators, the SVR-HGSO could better model the pile 
motion rates than SVR-PSO. Both models had identical 
performances on a millimeter-scale of 0.1 except for R2 and 
VAF indices. Other error criteria showed the great mistake 
over the modeling process. In this regard, the training 
phase RMSE index indicated a great difference of 60.36 % 
in favor of SVR-HGSO. MAE metric also showed a large gap 
of 57.41% between the two proposed models in favor of 
SRV-HGSO with the value of 0.283mm. Identically, the 
OBJ index, by encompassing RMSE and MAE of training 
and testing phases, showed that SRV-PSO with 0.445mm 
error had appraised the PS values with low-quality 
magnitudes, while HGSO has gained the 0.284mm as the 
mistake rate for the abovementioned purpose. Finally, the 
HGSO has performed fine rather than PSO however, both 
have had maximum error rates of 6.7 and 11.14 percent. 
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Generally, according to the results of developed 
frameworks, estimation of pile settlement using SVR 
coupled with optimization algorithms were done 
successfully. Nevertheless, employing the hybrid models 
with desirable outcomes with the aid of smart software-
based approaches can reduce the costs of physical 
experiments and simultaneously increase the accuracy of 
predicting mechanical features of crucial concrete material. 
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