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Highlights 
 

➢ Dragonfly/Firefly algorithm applies, owing to no real-time tracing and path scheduling 

➢ LQG controller and 3D Kalman filter are part of the UAV tracking route 

➢ The simulation indicates that the UAV's power consumption is equivalent to 56.2045 MW 

➢ This study will use MSE, PSNR, SNR, and Accuracy Criteria as evaluation criteria. 

 

Article Info   Abstract 

It is hoped that there will never be a war in the world, but one of the defensive requirements of any 
country during the war is the using Unmanned Aerial Vehicle used for destruction and defense. 
Today, UAVs movement from origin to destination is an important problem due to the abundant 
application of UAVs in wars and experimental research. This is important because the range of some 
UAVs in fly time is low, and others are very high due to their fuel. Parametric indeterminacy is 
several factors in UAVs movement prediction and trajectory, such as speed, movement angle, 
accuracy, movement time, and situation and direct control. So, this research is trying to provide a 
method based on LQG controller with and then set motion and specify path scheduling without 
deviations based on swarm intelligence algorithms in combinational mode: Dragonfly-Firefly 
algorithm. The simulation results showed that the UAV power consumption is comparable to 
56.2045 MW, which signifies a prosperous pass. Mean Square Error, Peak Signal to Noise Ratio, 
Signal-to-Noise Ratio, and Accuracy Criteria will all be used in this study. Based on the results of 
the evaluation criteria, it is feasible to ensure that the recommended technique will be used for UAV 
route scheduling and target trajectory optimization when the project is finished. 
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MLP Multi Layered Perceptron WSKF Without Sequence Kalman Filter 

MSE Mean Square Error   

  

1. Introduction 
Mobile Robots such as UAVs scheduling is an efficient 

method for preventing probabilistic errors for collision. In 

recent years, routing and path scheduling algorithms have 

been used in various applications. Based on different search 

techniques, such as decisive and random search, path 

scheduling algorithms are divided into two categories. 

Decisive search methods include dynamic programming, 

such as Astar (A*) method, but evolutionary algorithms are 

used in random search methods, such as Genetic and PSO 

algorithms [1]. The optimal route collects information 

directly by a connected line using greedy and evolutionary 

algorithms in a set of path stations in 3d space. So, the 

initial path of these algorithms produces a broken line. 

However, UAVs cannot accurately determine a schedule 

with a broken line because of the limitation of dynamic 

performance and UAVs kinematic features. The main 

purpose of path scheduling is tracking to produce a distinct 

path in which the radius of curvature is greater than the 

minimum radius of rotation at any point, and the path 

should identify the continuity of the curve [1].  

In general, tracking the UAVs involve identifying 

targets from launch to target time. Meanwhile, the 

identification of movement parameters such as speed, 

angle of movement, accuracy, time of movement, 

positioning, and localization of the head and the bottom of 

the UAVs as direct movement is important, which is the 

main challenge of this research for target trajectory. Hence, 

a large study area for military and aeronautical applications 

is being made for UAVs tracking and other moving objects. 

Typically, the dimensions first obtained to track the 

objectives of moving UAVs by a sensor in the polar 

coordinates of the UAVs are reported, then modeled by 

Cartesian coordinates. For this job, Kalman filters are 

appropriate. The Kalman filter is a filter that can detect 

noise as a variable, estimate errors and possible errors, and 

also estimate unknown variables that tend to be accurate. 

To do this, there are several Kalman filter models, including 

LKF, EKF, WSKF, PKF, 3d KF, UKF, and CKF.  

In tracking the path, assuming that the UAVs 

parameters change and this change is done linearly, 

Kalman filter equations that can be overcome this issue. 

Because the simulation world (the continuous world) is 

different from the real world (the discrete world), the same 

parameters should be used to implement the proposed 

method that tracks the UAVs until it encounters the target 

and between track-to-target tracking it will be done. Hence, 

the Kalman filter which has more similarities to the discrete 

world is a three-dimensional Kalman filter that is 

considered in this study. Because the environment in which 

the UAVs move is 3D and the Kalman filter, which can track 

target operations by specifying parameters such as speed, 

angle of movement, precision, movement time, position is 

three-dimensional Kalman filter which has higher 

capacities than other Kalman filters, including the 

Extended Kalman filter and the Without Sequencing 

Kalman filter. 

It should be noted at the outset that the parameters of 

the UAVs, including its position, speed, and initial motion 

angle are set manually and for which purpose it is 

determined and these parameters change until reaching 

that goal. Output noise data is the sensor which sends the 

information to the controller. In fact, there is also a 

controller in the UAVs that can be controlled by any model. 

The purpose of this study is to use the LQG controller. 

One of the reasons for using the 3D Kalman filter is as 

follows: tracking the path, assuming that the parameters of 

the UAVs are changed and this change is done linearly, so 

that Kalman filters can be used to overcome these 

problems. The three-dimensional Kalman filter parameters 

to reach the target in this research include a number of 

important items which include the position of the UAVs, 

the UAVs velocity at run-time, the time-per-second, and 

time-varying velocity update at different time intervals 

along the movement, UAVs control to track the target, and 

prevent collisions with other objects (barrier detection). 

These parameters cannot be fully and correctly optimized 

with Kalman filters. Now why are we considering space as 

NP-Hard, because to this day the correct and accurate 

approach has not been scientifically presented in the 

articles, and therefore the use of evolutionary algorithms 

and swarm intelligence can be optimized for this space.  

The method of path scheduling and target trajectory to 

reach the intended purpose of this research is to use 

random search methods. Since the Genetic algorithm has 

high convergence and speed, another same family 

algorithms that are swarm intelligence, have a higher rate 

of improvement than evolutionary algorithms. Hence, the 

use of a Dragonfly-Firefly Algorithm as combination mode 

will be used to optimize the 3D Kalman filter. The 

Dragonfly-Firefly Algorithm is very effective in conditions 

with a very large search space compared to conditions with 

small search space and is very effective in optimizing it due 

to its non-singular characteristics. The two most important 

factors in this algorithm include the attractiveness and 

intensity of light. Methods for reaching the target state 

estimation to describe the dynamic state of the UAVs to 

reach the target will be considered including equivalent 
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noise, detection and input along with switching. 

Considering the time, speed, movement and changing 

model are vital that according to the definitions given by 

Kalman filters and its Three-Dimensional type by 

optimizing it in a large space with the Dragonfly-Firefly 

Algorithm and these challenges are fixed. 

In the following, in addition to considering the method 

outlined in [1], it is necessary to consider some other 

similar methods that will be considered as base articles. In 

[2], the selection of the self-adaptive parameter is used with 

a prediction approach using a Hidden Markov Model2 

algorithm for a moving object. Also, in [3], dynamical 

analysis and path tracking are used by calculating the 

torque method optimally for a moving robot. In [4], the 

Kalman filter has been developed to detect rockets that 

consider parameters such as position and velocity to reach 

the target as critical research parameters that have been 

performed well. The rest of this paper organized as follows. 

In part two, an overview of UAVs controller in path 

scheduling and target trajectory surveyed. Based on some 

issues in recent and previous models and methods, part 

three describe and formulate a new method for UAVs 

controller in path scheduling and target trajectory. After 

that in part four, a simulation done in MATLAB 

environment by analyzing outputs. At the end, part six, 

reviewed this article by conclusion.  

 

2. Literature Review 
Numerous scholars have looked at the issue of 

autonomous target tracking from various angles as a result 

of the expanding use of space science and communications. 

Based on the target energy emitted, the radar tracking 

system typically determines the missile's direction towards 

the target. In the face of deceptive fighter behavior that 

affects the creation of navigation commands, these systems 

are frequently forced to diagnose a legitimate target. In 

general, there are three types of routing in missiles: flat 

routing, hierarchical routing, and routing of a place that 

depends on a network. A routing strategy based on network 

structure is employed in this study. 

For each missile to forecast its trajectory, a controller 

is required. Controlling a system requires gathering, 

analyzing, and sending the proper commands to the 

functional components that power the system. A missile's 

controller is comparative, and there are typically three 

different forms of comparative controllers: benefit 

tabulation, comparative control of the reference model, and 

self-regulating regulators. In this study, self-regulating 

regulators are used. Routing tasks are carried out using 

 
2 HMM 

machine-learning techniques, which are also used to 

forecast the movement and tracking of mobile robots. As 

one of the largest and most popular subfields of artificial 

intelligence, learning the machine organizes and 

investigates the means and procedures by which systems 

and computers may learn; computer programs can 

gradually enhance their performance in response to input 

[5]. Evolutionary algorithms and subsets of these swarm 

intelligence algorithms are among the approaches taken 

into account in the routing and tracking of missiles and are 

a member of the machine learning family. A systematic 

characteristic of swarm intelligence is that the agents 

cooperate locally and that their overall behavior converges 

to a location somewhat near the best solution. These 

algorithms' strength is the lack of a global control. This part 

takes a fast overview for UAVs controller based on target 

trajectory and path scheduling. [6] 

MPC used in several systems. A new form of PD 

controller proposed for dynamic positioning ssystem, 

which used adaptive dynamic modeling and programming 

in time-based form. This controller proposed in the 

presence of some parameters such as undefined system 

dynamics and maintaining energy efficiency. In [7], a 

predictive observer controller based on Lyapunov–

Krasovskii proposed for UAVs for collecting some future 

agent’s states. Another article proposed adaptive predictive 

controller in a system (image-based visual servoing or IBVS 

system) with disturbance observer [8]. A predictive control 

model in the form of motion-based used in [9] through 

LSTM as deep recurrent neural network in ship system. PID 

used in the form of predictive controller for dynamic 

positioning system which combined with LSTM algorithm. 

There are several controllers such as PD, PID and LQR 

considered in UAVs. In [10] UAV flight control and position 

recognition in flight time optimized due to reducing time in 

controller.  

Aerodynamics in constant forms based on Lyapunov 

theory is one of the key controller parameters for system 

dependability. Also proportional, derivative and integral 

control methods proposed in [11] for smart controllers. 

Advances in theorizing of control systems led to 

introducing smarter controller by using fuzzy logic, neuro-

fuzzy and neural controllers which can affected a 

tremendous impact by combining proportional, derivative 

and integral mode in other controllers. In [12] a derivative-

proportional controller designed for path trajectory and 

external disturbance reduction. 

The ideal input signal proposed from changeable 

feedback used in controller systems is one benefit of the 
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LQR controller [13]. On the other hand, PID controllers for 

four-rotor UAVs were optimized with evolutionary and 

swarm intelligence techniques such as PSO, HSA, and GA, 

with PSO achieving the best results [14]. A vision-based 

controller proposed in [15] for UAVs based on neural 

networks. MLP neural networks used in this method for 

target trajectory and navigation. 

A new optimal controller proposed in multi rotor 

UAVs in robust forms [16]. This controller tested with 

Lyapunov stability model o guaranty the robust form. Also, 

in [17] an optimal controller in 6-Degree of Freedom 

(6DOF) of AE2 UAVS proposed to show the performance in 

wind disturbances condition. The controller was based on 

feedback linearization. A new back-stepping controller with 

some constrain proposed for 6-DOF UAVs in adaptive form 

[18]. Another back-stopping controller proposed for fixed 

wing UAVs with external disturbance in landing with 

dynamic inversion [19]. A novel back-stepping controller 

paradigm based on the adaptive sliding mode in quadrotor 

UAVs was also suggested in [20]. A novel PID nonlinear 

controller with six degrees of freedom is utilized in 

quadrotor UAVs and is optimized via genetic algorithms 

[21]. For UAVs represented using the dynamic inversion 

approach, the primary strategy in [22] uses the RISE.  

In [23] an observer-based controller proposed for 

UAVs to disturbance rejection. A new method used in this 

article named PPF which combined with observed based 

controller. Another observer-based controller for UAVs 

proposed in [24] which can extend any states of observer 

for reducing wind disturbance. Integrating finite time with 

observer as wind disturbance rejection for UAVs proposed 

in [25] which obtained better robustness hat recent 

methods. Controlling multiple UAVs by one predictive 

controller for virtual guiding to reach to targets proposed in 

[26] based on MPC. In [27], reinforcement learning 

combined with MPC for design a new controller for UAVs 

in robust form.  

In [28], proposed three steps level of UAVs planning 

and trajectory which use GA, ACO and Voronoi diagram 

with good results of checkpoint. Also, in [29], an 

experimental model with physical testing proposed which 

use bio-inspired algorithms for path scheduling and target 

trajectory. This article impellent the model in real world 

and also in 3d simulation. Some UAVs used in disaster 

places of nature for target trajectory and path scheduling 

which one of them proposed in [30]. This article uses a kind 

of Genetic algorithm named DEA. In [31], deep learning 

model used for UAVs target trajectory for optimizing 

evaluation cost. A new swam intelligence algorithm name 

SMO used for UAVs target trajectory and planning based 

on gradient mode with great performance [32].  

 

3. Proposed Approach 
We use TTR VTOL UAV as main UAV system. The 

main parameters of TTR VTOL UAVs illustrated in Fig. 1.  

 
Fig. 1. TTR VTOL UAV main parameters 

The prediction of UAVs motion and tracking is a 
nonlinear optimization problem. The main purpose of 
tracking the UAVs is to move correctly without dealing with 
obstacles in the path and adjusting the control variables to 
optimize one or more objective functions, while at the same 
time, a series of tracking constraints such as route finding 
and route shortening. The UAV's tracking problem is 
mathematically formulated in the form of Eq. (1). 

Min Func(x˒u) 

Subjected to: h(x˒u) ≤ 0 

and g(x˒u) = 0 

(1) 

According to Eq. (1), Func  is the objective function that 
needs to be optimized, h  is the inequality constraint that 
represents the limitations of the UAVs tracking agent, g  is 
the constraints equal and is represented by the non-linear 
equation g(x˒u) and x is the vector of independent variables 
or state variables, and u u the vector of control variables or 
independent variables. The control variables including the 
output manufacturer include: 

✓ PG is the real power of routing,  
✓ PG1 is the simple route tracking mode, 
✓ VG is the UAVs manufacturer's voltage in tracking, 
✓ TS is setting the UAVs transmission route, 
✓ QC is the UAVs shunt compensator is in tracking. 
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Due to the control variables in the tracking of the 
UAVs, there is Eq. (2). 

UT

= [PG2 … PGNG
 ˒VG1 … VGNG

 ˒ Ts1 … TsNT
˒ QC1 … QCNC

] 
(2) 

According to Eq. (2),NG, NT, and NC, respectively 
include path generator numbers, UAVs routing set 
numbers, and robot UAVs power compensation numbers. 
The longitudinal motion of the UAVs is examined in this 
study to monitor routing activities. The UAVs math model 
is also needed to allow other operations to be performed. 
The equation of longitudinal motion of a UAVs can be 
represented by Eq. (3) for linear motion. 

(
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[
𝛿𝑒

𝛿𝑡
] 

(3) 

Which according to Eq. (3), t = usin(θ) + wcos(θ), δe 
and δt, are elevators and control inputs of the UAVs, u is the 
forward speed (horizontal) of the UAVs, w is the UAVs 
vertical speed, q is the ground and ground rates for the 
initial UAVs propulsion, θ is the ground angle and h is the 
UAVs height to the ground, and Xu, Xw, Xq, Zu, Zw, Zq, Mu, 
Mw, and Mq  as well as Xδe, Xδt, Zδe and Mδe are the later 
derivatives UAVs stability. The mathematical model in Eq. 
(3) can be represented by the form of Eq. (4). 

𝑥̇ = 𝐴𝑥 + 𝐵𝑢 (4) 

According to Eq. (4), xT = [u    w    q     θ     h] is the 
vector of the longitudinal motion of the UAVs, and the Eq. 
(5), is the transition matrix of the UAVs, as well as the Eq. 
(6), the distribution of control with the 3D Kalman filter, 
and uT = [δe  δt], is the input vector of the control. 
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 (5) 

𝐵 =

[
 
 
 
 
𝑋𝛿𝑒

𝑍𝛿𝑒

𝑀𝛿𝑒

0

0

    

𝑋𝛿𝑡

0
0
0

0 ]
 
 
 
 

 (6) 

The stability of the UAVs model has to be examined 
now. In theory, the transfer function, which is Eq. (7), may 
be used to derive the longitudinal equations. 

(𝑠2 + 15.043𝑠 + 78.0719) (𝑠
2 + 0.587𝑠
+1.1174

) = 0 (7) 

UAVs needs to recognize state space which is modeled 
as q(m + 1) = Ax(k) + B∆u(m) + Ψ(m) and  
y(m˒k) = AB(m), where u(m) is the control input, q(m) is 
the state at time step m, y(m˒k) is the output, and Ψ(m) is 
an unknown disturbance. These equations allowed the 
system matrices A and B to be derived for a single axis with 
pitch or roll running at 10 Hz such as:   

A =

[
 
 
 
 
1.0 0.1 0.0048
0 1.0 0.0921
0
0

0

0
0

0

0.7815
−3.6435

0

     

0.0001
0.0037
0.0614
0.2692

0

    

0.0010
0.0397
1.0980
18.3076

1.0 ]
 
 
 
 

 

B = [0˒ 0.0029˒0.2095˒9.9251˒1.0]T 
And state vector is as ẋ =

(px  vx  θ   θ̇   ux   py   vy  ∅   ∅̇   uy]
T

 based on A and B. 

Output can estimate and calculate in position ofy = (px˒py). 

Other states include some other operator and variables 
such as velocity(vx˒vy), pitch θ, roll ∅ and also their 

derivatives which stored controls as (ux(m)˒uy(m)). In this 

research, LQG controller is considered as the optimal 
control method in the UAVs. The vector of optimum control 
for a system with a state space model under Eq. (8) is as 
follows: 

𝑢(𝑡) = −𝐾𝑥(𝑡) (8) 

The cost function, also known as the quadratic 
performance index function, is minimized using Eq. to 
discover the best control inputs while optimizing state 
variables at a given moment (9). 

𝐽 =
1

2
∫(𝑥𝑇𝑄𝑥 + 𝑢𝑇𝑅𝑢)𝑑𝑡  (9) 

By Eq. (9), Q is a positive semi-symmetric matrix with 
definite symmetry, and R is a positive definite symmetric 
matrix. Any efficient control is chosen using weight Q and 
R matrices depending on effectiveness. The Gain vector 
matrix of optimal control is calculated as Eq. (10). 

𝐾 = 𝑇−1(𝑇𝑇)−1𝐵𝑇𝑃 = 𝑅−1𝐵𝑇𝑃 (10) 

Therefore, based on Eq. (10), the optimal control 
equation is converted into Eq. (11). 
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𝐴𝑇𝑃 + 𝑃𝐴 − 𝑃𝐵𝑅−1𝐵𝑇𝑃 + 𝑄 = 0 (11) 

The UAVs will move in the manner of Eq. (12) stable 
movement if a definite P positive matrix can be derived 
using the rational equation 

𝐴𝑇𝑃 + 𝑃𝐴 − 𝑃𝐵𝑅−1𝐵𝑇𝑃 + 𝑄 = 0 (12) 

Based on a series of specific circumstances, the LQG 
controller can be designed using a rational equation such as 
Eq. (11) that can be used without changing the control 
matrix and mode to find the optimal Gain matrix. The 
optimized 3D Kalman filter can also be determined by 
considering that there are several unspecified modes. For a 
UAVs without adding an integer, we can use the earlier 
defined matrix A and B to control it by means of a control, 
and the matrices of the weight of the mode Q and G are used 
to find the optimal matrix or K, which allows the input of 
the control gives u = −kx(t). In this research, the LQG 
controller was designed without affecting measurement 
impediments in the estimation and tracking of UAVs 
targets. The equations of the system have been 
discontinued using Euler's approach. Initially, the LQG 
controller was evaluated without affecting the 
disturbances, and then the system response to the 
controller under conditions of disturbance would be 
investigated, once using the Kalman filter, three-
dimensional, and once without using it. Also, operations for 
estimating and tracking the UAVs target will be carried out 
during routing time and reach. A three-dimensional 
Kalman filter will use state equations, and initial values for 
calculating gain and residual values, as well as estimating 
the actual value of the signal in the estimation and target 
tracking. Equations (13) and (14) in the form of linear 
discrete states and measurement equations are used to 
analyze the stages of the 3D Kalman filter. 

𝑋(𝑘 + 1) = 𝐴𝑋(𝑘) + 𝐵𝑢(𝑘) + 𝐺𝑤(𝑘) (13) 

y(k) = HX(k) + v(k) (14) 

According to the equation of state in Eq. (13), X(k) is 
the UAVs mode vector, A stands the UAVs propulsion 
matrix, u(k) shows the UAVs input vector, w(k)  is the 
random Gaussian noise vector with zero mean and 
covariance structure, B is the control distribution matrix, G 
is the UAVs noise transmission matrix, which is Gaussian 
noise. In the equation of measurement, according to Eq. 
(14), y(k) is the measurement vector, H is the measurement 
matrix, v(k) is the measured noise vector with mean zero 
and the covariance structure. There is no relationship 
between the noise of the UAVs w(k) and the measurement 
noise v(k). The covariance matrices for w(k) and v(k) are 
also calculated as Eq. (15) and (16) respectively. 

𝐸[𝑤(𝑘)𝑤𝑇(𝑗)] = 𝑄(𝑘)𝛿(𝑘𝑗) (15) 

E[v(k)vT(j)] = R(k)δ(kj) (16) 

According to the above two equations, δ(kj) is the 
Kroenke symbol, and E is the expected value. The optimal 
Three-Dimensional Kalman filter, which estimates the 
UAVs mode vector, is carried out with the returning 
equations that follow. The extrapolation equation is 
calculated by Eq. (17). 

𝑋𝑒 (
𝑘

𝑘
− 1) = 𝐴𝑋𝑒 (

𝑘 − 1

𝑘 − 1
) + 𝐵𝐾𝐿𝑄𝐺(𝑘 − 1)(𝑋𝑑 

−𝑋𝑒 (
𝑘 − 1

𝑘 − 1
))) 

(17) 

This sequence is shown in general and summary in Eq. 
(18). 

∆(𝑘) = 𝑍(𝑘) − 𝐻𝑋𝑒(
𝑘

𝑘
− 1) (18) 

Also estimates the state calculated by Eq. (19). 

𝑋𝑒 (
𝑘

𝑘
) = 𝑋𝑒 (

𝑘

𝑘
− 1 ) + 𝐾(𝑘)∆(𝑘) (19) 

The Gain matrix of the optimal Three-Dimensional 
Kalman filter is also calculated from Eq. (20). 

𝐾(𝑘) = 𝑃 (
𝑘

𝑘
)𝐻𝑇𝑅−1(𝑘) 

= 𝑃 (
𝑘

𝑘
− 1) 𝐻𝑇 (𝐻𝑃 (

𝑘

𝑘
− 1)𝐻𝑇 + 𝑅(𝑘))

−1

 

(20) 

The covariance matrix of the Three-Dimensional 
Kalman filter error is also calculated by Eq. (21). 

𝑃 (
𝑘

𝑘
) = (𝐼 − 𝐾(𝑘)𝐻)𝑃(

𝑘

𝑘
− 1 ) (21) 

The covariance matrix of the extrapolation error is also 
calculated by Eq. (22). 

𝑃 (
𝑘

𝑘
− 1) = 𝐴𝑃 (

𝑘 − 1

𝑘 − 1
)𝐴𝑇 + 𝐵𝐷𝑢(𝑘 − 1)𝐵𝑇  

+𝐺𝑄(𝑘 − 1𝐺
𝑇  

(22) 

According to Eq. (18) to (22), Xd is the arbitrary vector, 
and I is the identification matrix. The 3D Kalman filter 
attempts to evaluate the actual signal amount in the target 
tracking and its estimation with UAVs -based disturbances 
based on the Dragonfly-Firefly algorithm that is carried out 
through the Gaussian distribution. These two algorithms 
have the same operators and application, but their 
population is different and also fitness function which refer 
to Eq. (1).  

The Dragonfly-Firefly algorithm apply for optimizing 
path scheduling and target trajectory area. Variation in 
light intensity or brightness and the formulation of appeal 
are two crucial components of the Dragonfly-Firefly 
algorithm. For the sake of simplicity, it is assumed that the 
brightness of the Dragonfly-Firefly, which is connected to 
the coding target function, determines how enticing it is. 
The brightness for firefly with variable I is chosen in the 
particular location x as I(x)∞f(x) to optimize the 
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optimization of the problems. Other light worms or 
dragonflies frequently comment on how attractive β is. As a 
result, there will be a variation in the distance rij  between 

firefly or dragonflies i  andj. It is important to remember 
that when the light gets further from its sources, its 
intensity drops. In the simplest scenario, the inverse square 
law's definition of Eq. (23) is used to determine how the 
intensity of light I(r) varies. 

𝐼(𝑟) =  
𝐼𝑠
𝑟2

 (23) 

Where the source of Is is strong. For a particular 
media, the variable γ is used to take into account a 
consistent light absorption coefficient. With r, whose 
relationship is specified by Eq. (24), the brightness I has a 
varied intensity. 

𝐼 =  𝐼0𝑒
−𝛾𝑟  (24) 

I0 is the primary brightness's intensity as determined 
by Eq. (24). The impact of the inverse square law 
approximation and Gaussian absorption is specified in 
IS/r

2 to prevent the singularity mode at r=0 as seen in Eq. 
(25). 

𝐼(𝑟) =  𝐼0𝑒
−𝛾𝑟2

 (25) 

The light intensity that fireflies and dragonflies can see 
directly relates to their appeal. Eq. (26) may be used to 
describe firefly attractionβ. 

𝛽 =  𝛽0𝑒
−𝛾𝑟2

 (26) 

β0 represents attractiveness when r=0 in equation 
(25),In terms of computing, equation  1/(1 + r2) performs 
better than the power function, which is often written as Eq. 
(27). 

𝛽 =  
𝛽0

1 + 𝛾𝑟2
 (27) 

A uniformly reducible function, such as Eq. (28), can 
represent the endearing function β (r) and a Cartesian 
distance, such as Eq.(29), separates the 
fireflies/dragonflies i and j in xi and xj. 

𝛽(𝑟) =  𝛽0𝑒
−𝛾𝑟𝑚

 , (𝑚 ≥ 1) (28) 

𝑟𝑖𝑗 = ||𝑥𝑖 − 𝑥𝑗|| = √∑(𝑥𝑖,𝑘 − 𝑥𝑗,𝑘)
2

𝑑

𝑘=1

 (29) 

In the equation (29), xi,k is the k’th spatial coordinate 

component xi  and the i  -th firefly/dragonfly. It is 
represented as Eq. (30) in a two-dimensional mode 
comparable to Euclidean distance. 

𝑟𝑖𝑗 = √(𝑥𝑖 − 𝑥𝑗)
2
+ (𝑦𝑖 − 𝑦𝑗)

2 (30) 

A type of attraction for the firefly/dragonfly j is 
provided by the velocity of the insects, as shown by Eq. (31). 
It is visible with periodic signals, referred to as optimum 
route scheduling. 

𝑥𝑖 = 𝑥𝑖 + 𝛽0𝑒
−𝛾𝑟𝑖𝑗

2

(𝑥𝑗 − 𝑥𝑖) +  𝛼 ∈𝑖  (31) 

Due to the draw of the firefly/dragonfly, Eq. (31)'s 
second component is required. α is a randomly chosen 
parameter, and  ϵi is a vector of randomly chosen values 
selected from the uniform or Gaussian distribution. 
According to the degree of fitness of each worm's position, 
the amount of light emitted at each occurrence is 
calculated. The quantity of fitness determines how much 
light is added in each cycle. For each usage, the correlation 
of the light firefly adjustment is stated as Eq. (32). 

𝜑𝑖(𝑡) = (1 − 𝑝)𝜑𝑖(𝑡 − 1) + 𝛾𝑗(𝑥𝑖(𝑡)) (32) 

In Eq. (32), where  p and φ are fixed quantities for 
simulating the progressive decline and its impact on light, 
 j(xi(t))  is the new value of the firefly's light-emitting at 
reuse time, and (1 − p)φi(t − 1) is the fitness location of the 
worm I in the repetition t of the algorithm. Eq (33) is 
employed to pinpoint the target trajectory or determine the 
nearby location of other worms. 

𝑝𝑖𝑗(𝑡) =  
𝜑𝑗(𝑡) − 𝜑𝑖(𝑡)

∑ 𝜑𝑘(𝑡) − 𝜑𝑖(𝑡)𝑘∈𝑁𝑖(𝑡)
 (33) 

In Eq. (33), Ni(t) is the set of fireflies from firefly 
neighboring at time t. There is a gap between the firefly 
i and j at time t which essentially use Euclidean distance as 
dij(t). The probability p of Eq. (34) may be used to solve the 

firefly's arbitrary time shift. 

𝑥𝑖(𝑡 + 1) =  𝑥𝑖(𝑡) + 𝑠 (
𝑥𝑗(𝑡) − 𝑥𝑖(𝑡)

||𝑥𝑗(𝑡) −  𝑥𝑖(𝑡)||
) (34) 

n the Eq. (34), the operator ||…|| displays the 
Euclidean soft function and s is the step of motion. xt(t) is 
the m-dimensional vector of the firefly/dragonfly location 
in the time unit t. Updating data neighbors with duplicate 
phrases is also another matters, and the need to updating 
neighbor range is felt. For any firefly/dragonfly, i is 

assigned a neighbor, whose radial range rd
i  is naturally 

dynamic. According to Eq. (35), neighboring update 
operations are obtained. 

𝑟𝑑 
𝑖 (𝑡 + 1) = min {𝑟𝑠˒max {0˒ 𝑟𝑑

𝑖(𝑡) 

+𝛽(𝑛𝑡 − |𝑁𝑖(𝑡)|}} 
(35) 

In Eq. (35), β is a constant parameter and nt is a 
parameter to control the number of neighborhoods or to 
identify the exact areas for trajectory.  
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4. simulation 

Given the fact that various parameters for different 

parts of the UAV are mentioned in this study, at the 

beginning of the simulation, the set values should be noted. 

Inputs in this control include speed, type of longitudinal or 

deep motion, torque and route identification, and output is 

path detection and target tracking. In the beginning, 

different parameters of a UAV can be found in Table (1).

Table 1. Specification of studied DGs.  

π/180 UAV rotational capability 

9.81 m/s2) Gravity) 

60 Frequency (Hrz) 

299792458 m/s) Light Speed) 

17 Boltzman Constant 

0.5 Sampling rate for simulation (specific for Euler integral) - (sec) 

270 Fly Time (sec) 

12x12 Environment Size (Km) 

200 UAV cruiser height (m) 

30 Average speed at flight time (m/s) 

15 Minimum speed at flight time (m/s) 

50 Maximum speed at flight time (m/s) 

200 Spin speed in radius (m/s) 

1 Initial UAV gain 

2500 Path to goal (m) 

23 Internal engine heat engine UAV (centigrade) 

Similarly, the parameters of the Bat Algorithm are 

according to Table (2). 
Table 2. Dragonfly-Firefly Algorithm Parameters 

1000 Iteration Number 

1 Initial Population of dragonflies/fireflies 

0.3 Light intensity rate 

2 Attraction rate 

When the simulation is performed, the longitudinal 

motion of the UAV first shows its output. Fig. 2, divided 

into four sections, shows the response of each step of the 

UAV movement from the onset of flight from the ground to 

the steady, stable level of flight in the sky. 
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Fig. 2. Shows the UAV output from the beginning of the flight to the equilibrium point in flight in the sky 

Depending on the Fig. (2) and the settings made for 

the UAV, it is shown how the UAV moves at any moment. 

In all the domain images, from the time of flight to reaching 

a specific point, is shown. On the upper left, the UAV range 

is shown initially, which is intended to move from the 

ground. In the upper left-hand figure, the range of motion 

is shown from the surface of the ground, reaching a given 

point of flight. In the lower left-hand figure, the range of 

balance adjustment is shown on the fly. In the bottom right-

hand side, the equilibrium point is shown. Based on this 

range of motion adjustment, four Fig. (3) to (6) are also 

shown for setting conditions. 

 

Fig. 3. UAV range with the intention of moving from the ground 

 

Fig. 4. The range of motion from the ground to a specific point of flight 
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Fig. 5. Flight adjustment range 

 

Fig. 6. Reaching the range of the equilibrium point 

   The stable mode is also shown in Fig. (7) after applying 

the motion. This section will be based on the LQG 

controller. Given this shape, it can be seen that the UAV is 

in perfect balance and the controller provided in the UAV is 

resistant to the settings. According to Fig. (7), it can be seen 

that the rate of delay in moving UAV is commensurate with 

the flight time to reach the target and is declining. 
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Fig. 7. Rate of delay in UAV movement 

After the operation, the UAV output will be shown. The 

graphical form of it for moving in an environment of a given 

path is based on a LQG controller based on a Three-

Dimensional Kalman filter based on the Dragonfly/Firefly 

algorithm and the property that has all evolutionary 

algorithms and swarm intelligence being randomly and 

may be in each run time from a path, move and start 

moving to reach the target. But the prediction of moving 

and tracing it with this algorithm is constant and tracks it 

until it reaches the target. In Fig. (8), we can see the path 

scheduling and target trajectory in real-time mode in 

graphical output. 

 

Fig. 8. The initial movement of the UAV at a specified path and tracing it to reach the target 

   According to Fig. (8), the UAV will move in a 12x12 km 

environment. The D spot, which is specified at 8x8 km 

coordinates, is the main objective that the UAV must take 

to reach its path. This is a path traversal using the routing, 

modeling and its outputs are shown in Fig. (2) and below, 

from Fig. (3) to Fig. (4), and eventually reaching a state 

balance was flying and resistant in Fig. (7). The UAV is 

shown in red color. The green lines are the UAV path. There 

are two pink circular lines, one spotted near the UAV which 

detects the motion of an UAV to track the target or D and 

tracks in real-time mode for any movement of the UAV. 

Also, the large pink circle performs route estimation 
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according to the direction the UAV runs. Initially, this is a 

large circle and, to reach the target, it will be as small as 

possible until the estimated operation is done correctly. 

Several illustrations of the UAV outputs to reach the target 

are shown in Fig. (9) to (12). 

 

Fig. 9. Shows the movement of the UAV from the green path and tracing and estimating the target 

 

Fig. 10. Shows the movement of the UAV from the green path and tracking and target estimation - approaching the target or D 
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Fig. 11. Shows the movement of the UAV from the green path and tracing and objective estimation - crossing the green circle of the dots around the 

target or D 

 

Fig. 12. Finishing the simulation and passing a specific path to the goal with its tracking and estimating 

   The UAV power consumption is equivalent to 56.2045 

mW at the simulation's conclusion, indicating a successful 

passing. MSE, PSNR, SNR, and Accuracy Criteria will all be 

employed as assessment criteria in this study. After the 

project is completed, it is possible to guarantee that the 

suggested approach will be utilized for UAV route 

scheduling and target trajectory optimization based on the 

findings of the assessment criteria. The outcomes of the 

evaluation techniques are displayed in Table 3. 

Table 3. Outcomes of evaluation criteria 

MSE PSNR (dB) SNR (dB) Accuracy (%) Sensitivity (%) Specificity (%) 

0.6400 9.9310 56.0618 96.00 80.08 80.07 
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5. Conclusion 

The UAV tracking is known as an important issue in 

military science. Today, the design of UAVs is tracked to 

reach and reach targets, and are capable of controlling and 

redirecting. The proposed approach of this study is to use 

evolved methods to track UAVs until the goal is achieved. 

For this purpose, after modeling the UAV system and 

positioning and deploying it, the specified and the same 

path are proposed as an optimization space. Simulation 

findings show that the UAV's power consumption is 

equivalent to 56.2045 mW.  The UAVs tracking route uses 

a combination of LQG controller with 3D Kalman filter for 

tracing, but due to no real-time tracing and path 

scheduling, a new combinational method apply which is 

Dragonfly/Firefly algorithm. In the future plans, we try to 

make a simulation of the proposed approach and prove it 

and compare it with the basic articles of this research. 
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