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Highlights 
 

➢ To cut expenses and environmental issues, smart grids are being studied 

➢ "Ensuring safe operation" and "facilitating economic operation" are two main goals 

➢ The optimum ESS charging and discharging are suggested in this article 

➢ The proposed model is tested on a 4-unit system with ESS to verify its performance 

➢ For optimization, a honeybee-mating algorithm with bacterial foraging were combined.  

 

Article Info   Abstract 

Unit commitment (UC) programming is a critical task in power system operations, which faces 
problems such as uncertainty in generation and loads with the significant rise in the generation of 
electrical energy through renewable energy sources (RES) such as wind and responsive load 
programs. The problem of UC, or the unit commissioning problem, is a major optimization 
problem, the exact solution of which can lead to a significant reduction in costs. In this article, smart 
grids are considered which aim to reduce costs and environmental problems. Thus, this paper 
solves the UC problem in smart grids by considering the emission of generation units, resulting in 
a multi-objective function for minimization. With the introduction of smart grids, energy storage 
systems (ESS) have also been considered in the grid. This paper proposes the optimal charging and 
discharging of ESS. Another problem modeled in this article is that of demand response (DR) in 
smart grids. To validate the performance of the proposed model, it is tested on a 4-unit system with 
ESS and the results show its optimal performance. To solve the problem of UC programming, a 
hybrid honey bee mating and bacterial foraging algorithm are used to reduce the complexity of the 
problem and achieve optimal results. 
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HGSA Henry gas solubility optimization algorithm SOC State of charge 

HBMO Honey bee mating optimization SOD State of discharge 

MGWO Modified grey wolf optimization algorithm SOE State of energy 

MG Micro grid UC Unit commitment  

  

1. Introduction 
The purpose of implementing the UC problem is to 

determine the ON units and the economic power flow to 

supply the load at the minimum cost. Due to uncertainties 

related to the load prediction error, unexpected generator 

decommissioning and transfer line outages during real-

time operation, operators have to deviate from the pre-

determined decisions by the unit commitment (UC) 

program and take costly modification measures, e.g., rapid 

generator commissioning or load disconnection to 

maintain system security [1].To overcome global warming 

and the environmental problems caused by fossil fuels, the 

industry has shifted its focus towards renewable energy 

sources (RES). Increased penetration of RESs that have 

fluctuating power generation, e.g., solar and wind energies, 

introduces more uncertainty to the system and poses new 

challenges for the grid manager and generation 

programming [2].In such conditions, there is a dire need 

for a UC process to manage system uncertainty 

[3].Currently, the electricity generation industry uses 

reserve constraints for the UC problem to deal with 

uncertainty [3]. 

Reduction of system operating costs is a key economic 

program in power systems. As such, programming for unit 

commissioning and decommissioning is of utmost 

importance [4].Generally, two objectives of “ensuring safe 

operation” and “facilitating economic operation” are of 

significance. In the traditional operation of power systems, 

the issue of entry and exit of units in the circuit is planned 

and implemented based on the principles of grid security.In 

such a case, the operation of the grid is not necessarily the 

most economical possible mode of operation. In the 

restructured environment, security can be facilitated by 

using various services available to the market and the 

electricity consumption price can be reduced by the 

economic use of the electricity market [5]. In [6], the 

authors introduced the use of electric ESSs as a proper 

strategy for reducing fluctuations and using renewable 

dispersed generators in the micro grid (MG). Among the 

various storage technologies, battery energy storage was 

introduced as a suitable option. In [7], considering the 

stochastic nature of wind power generation and electric 

vehicles (EVs), as well as the emission of thermal units, a 

model was formed in the presence of wind power and EVs. 

This model minimized the total cost and carbon emissions 

of the system by imposing operating constraints related to 

EVs and wind power. In [8], the authors considered energy 

management to reduce consumer energy costs, maximize 

user comfort and reduce carbon emissions. To this end, it 

introduced an efficient energy management model for an 

MG with the ant colony optimization algorithm for 

systematic load scheduling and charging/discharging of 

EVs. In [9], the authors dealt with the inability of 

governments to provide the necessary resources to invest in 

the electricity industry and the rise in the price of fossil 

fuels, as well as the tendency to study and pay attention to 

economic issues in power system research. Then, using a 

modified grey wolf optimization algorithm (MGWO), it 

solved the UC problem in a power system. It also 

considered system uncertainty, and finally, compared the 

results with those of the standard GWO and the particle 

swarm optimization (PSO) algorithms. In [10], the authors 

proposed a stochastic optimization framework for 

scheduling the commitment of dispersed generation (DG) 

units due to the high penetration of photovoltaic (PV) units. 

It also assessed the effect of flexible thermal and electrical 

loads on the overall operating cost of the system. In [11], the 

authors introduced a robust two-stage optimization model 

to solve UC problems by considering variable wind power 

generation. In [12], the authors proposed a robust 

optimization approach to adapt to wind output uncertainty. 

In [13], the authors analyzed the difference between multi-

band robust optimization and Seng-Cheol robust 

optimization. This study also improved the multi-band 

robust optimization parameter setting method based on the 

wind power sample. The results were tested on an IEEE 39-

bus power system with three wind farms. In [14], the 

authors examined UC scheduling on integrated fuel and 

natural gas systems. Natural gas storage was done by 

supporting the gas grid during peak hours of natural gas 

demand by reducing pipeline density.A hydrogen ESS was 

integrated with novel flexible technologies, including 

power-to-gas (P2G) and DR program (DRP), to reduce the 

RES costs of operation and transfer the peak load demand 

to peak hours. In [15], the authors performed a sensitivity 

analysis to evaluate the effect of increasing thermal load on 

the combined heat and power (CHP) unit operation as its 

thermal and electrical output. A plug-in EV (PEV) charging 

station was integrated to observe its effect on grid 

performance as PEVs impose on the system an unplanned 

and uncertain load. In [16], the authors examined the 

advantages of combining the stochastic programming 

framework with reserve constraints.  



           

In [17], the authors discussed the UC problem by 

including ESSs (ESS). In this paper, the authors proposed 

a meta-heuristic algorithm called the Henry gas solubility 

optimization algorithm (HGSA) to solve the problem. This 

algorithm seems to behave similarly to the PSO algorithm 

to some extent, but due to more accurate modeling, the 

update function can be superior to the PSO algorithm. In 

[18], the authors presented the UC problem by considering 

the natural gas grid. In this article, the objectives of 

minimizing the operating cost of the units and the cost of 

gas units were considered. In [19], the authors proposed the 

UC problem to reduce generation costs. In this paper, the 

constraint of the units’ slope change was studied and 

several heuristic algorithms were used to solve the 

proposed problem. It was shown that the differential 

evolution algorithm had better performance than other 

evolutionary algorithms in terms of UC. In [20], a novel 

global optimization algorithm was proposed to solve the UC 

problem. The center point (CP) algorithm was modeled to 

solve the UC problem, which was ultimately compared to 

the solution by CPLEX. The results showed this algorithm 

outperformed CPLEX.  

The reduction of unit costs along with the cost of 

charging and discharging the EVs is considered in this 

paper and the Benders optimization algorithm is chosen to 

solve the proposed problem. We attempt to consider the UC 

problem in smart grids and ESSs in modeling. The 

reduction of environmental pollution is also considered in 

this problem and its related constraints, including the slope 

constraint, the minimum / maximum ON/OFF time of the 

units and the reserve constraint, are also taken into account 

to propose a complete model of the UC problem.  

 

2. The proposed modeling 
In this section, the modeling (the multi-objective 

function model, constraints governing the optimization and 

power flow) are presented and, at the end, the evolutionary 

algorithm is described. The goal is to reduce power losses, 

improve the voltage profile and balance the load index, 

presented as a multi-objective function. 

 
2.1.  Objective function of the problem 

In this section, the mathematical model and the 

proposed method for solving the problem are presented. 

First, problem modeling, including the objective function 

and problem constraints, are introduced and, finally, the 

proposed problem-solving method is described 

 

(1) 

Equation (1) represents the multi-objective function 

considered in this paper. This function consists of three 

parentheses; the first parentheses include unit operating 

costs, the second include unit emission costs and the third 

include the cost of charging and discharging the ESS. In the 

first parenthesis of the objective function, N is equal to the 

sum of generation units and T is equal to the set of 

operating time.  is the fixed cost of the i-th generation 

unit,  is the binary variable of unit i and  is the binary 

variable of the i unit at time t to indicate the on / off status 

of the generation unit;  is the variable cost of the 

variable unit i,  is the power generated by the i unit at 

time t,  is the fuel cost of i unit and  is the cost of 

turning the i unit on;  is the binary variable of the i unit 

at time t in order to indicate the ON hours of generation 

units,  is the cost of turning off the ith unit at the th-th 

time in order to indicate the ON hours of generation units; 

 is equal to the cost of turning off the i unit;  is the 

binary variable of unit i at time t in order to indicate the 

OFF hours of generation units. In the second parenthesis of 

the function, ,  and  denote the ith 

generation units. In the third parenthesis,  is the cost 

of operating the ith storage system,  is the charge 

capacity of the ith storage at hour t,  indicates the 

efficiency of the ith storage system and M represents the 

total number of ESSs in the system. 

 
2.2. Objective function of the problem 

This section presents the constraints of the problem. 

The proposed UC problem constraints are briefly equal to 

the constraints of operating the generation units, the power 

balance in the system, power slope, maximum and 

minimum on / off time of the units, reserve in the system, 
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optimal charge and discharge constraints of the ESS and 

the energy remaining in the storage system, which are 

presented below, respectively. Constraint (2) ensures that 

generation units are operated between the minimum and 

maximum allowable capacities. 

 
(2) 

Eq. (3) shows the constraint of the upward and 

downward power slope of power generation units. 

 
(3) 

In Eq (3),  and  are the upward and 

downward slope of the ith generation unit, respectively. 

Eqs. (4) and (5) represent the minimum on and off times of 

generation units, respectively, which are defined as follows: 

 

(4) 

 
(5) 

In (4),  is the minimum time on time and, in (5), 

 is the minimum off time of the ith unit. Eq. (6) shows 

the relationship between the off and on binary variables 

and the status of the units, introduced as follows:  

 
(6) 

Eq. (7) also shows the energy remaining at hour t in 

the ith storage system, which is defined as follows: 

 
(7) 

In (7),  is the energy remaining in the ith storage at 

time t. Equations (8) and (9) indicate the constraint on the 

charge and discharge capacity of storage systems, 

respectively.  is a binary variable that shows the charge 

and discharge status of the storage system; if 1, it indicates 

the battery charge.   is the maximum charging power 

and  is the maximum discharge power. 

 
(8) 

 
(9) 

Eq. (10) indicates the intended reserve limit, which is 

defined as follows. Moreover,  is the amount of load 

reserve at hour t. 

 
(10) 

Eq. (11) shows the power balance in the system; the 

output power in the grid should be equal to the power 

consumption. Here, the power of the units and the 

discharge power of the storage system are viewed as the 

generated power, while the system load and charging power 

of the ESS are regarded as consumed power. On this,  is 

the load power of the system at hour t. 

 
(11) 

The DR (DR) program is given in Eqs. (12) to (14). 

 
(12) 

 
(13) 

 
(14) 

In (12),  is the percentage to be shifted in the DR 

program,  is the load at hour t and  is the amount of 

power that is to be shifted from hour t. Eq (13) shows that 

load shifts or load changes.  must be between the 

difference between the minimum and maximum allowable 

values. Eq (14) ensures that the sum of the changed loads 

in the DR is equal to the sum of the initial loads of the 

system; in other words, no load must be removed in the DR 

for us to add its cost to the objective function. 

Optimization problems must be solved such that the 

power flow Eqs (15-16) constantly hold:  

 
(15) 

 

(16) 

min max

, , , , ,i t i t i t i t i tv g g v g 

, 1 ,

dw up

i i t i t iR g g R+−  − 

up

iR
dw

iR

, ,1i

t

i k i tk t UP
s v

= − +


, ,1
1

i

t

i k i tk t DT
u v

= − +
 −

iUP

iDT

, 1 , 1 , 1 ,i t i t i t i tS u v v+ + +− = −

, 1 , , , 1/cha dis

i t i t i t i i t ie e p p + = +  − 

,i te

,i tz

,

cha

i tp−

,

dis

i tp−

, , ,0 cha cha

i t i t i tp p z− 

( ), , ,0 1dis dis

i t i t i tp p z−  −

tr

max

, ,i t i t t

i N t T

g g r
 

− 

d

tp

, , ,

dis dsm dis

i t i t t i t

i N i M

g p p p
 

+ = + 

d

t tp =

d dsm d

t t t t tp p p −   +

dsm d

t t

t T t T

p p
 

= 


d

tp t

dsm

tp

( )
1

cos
BusN

i i j ij ij i j

i

P VV Y   
=

= − +

( )
1

sin
BusN

i i j ij ij i j

i

Q VV Y   
=

= − +



           

Here,  and  are the active and reactive power 

injected into the grid's ith bus, respectively.  and  are 

respectively the voltage amplitude and angle of the ith 

node.  and  are the admittance amplitude and angle 

between nodes i and j of the grid, respectively. Herein, the 

Newton-Raphson method is adopted for load dispatch. 

 

2.3. Problem solving method 

In this section, the problem-solving method is 

presented. As discussed in the objective function and 

problem constraints sections, the proposed model for the 

UC problem is a linear integer programming model. In 

general, an optimization problem is solved as follows: 

 
(17) 

 (18) 

 (19) 

 (20) 

 (21) 

Therefore, if the optimization problem is converted 

into the problem (17) to (21), provided that function f is 

linear and variable x is binary and continuous, with the 

constraints of equality and inequality, the problem can be 

solved using powerful mathematical software programs 

recently presented by great mathematicians; it can be 

ensured that the obtained solutions are the global optima.  

To solve the above problem, we use the hybrid 

algorithm of honey bee mating and bacterial foraging. The 

hybrid algorithm is described below. 

 

2.4. HBMO algorithm 

The honey bee mating optimization (HBMO) is a novel 

optimization algorithm inspired by the actual mating 

process of honey bees. As a general optimization method 

based on the inset behavior, this algorithm relies on the 

mating behavior of male bees with the queen bee. Honey 

bees’ behavior is an interaction of genetics, the 

physiological and ecological environment, the social 

conditions of the hive or a combination of these factors [21]. 

A beehive often houses a queen with a long life to lay 

eggs, from 0 to several hundreds of male bees (drones), and 

about 10000-60000 workers. The queen(s) play the main 

role of reproduction in some species of honey bees and are 

responsible for laying eggs. The queen lays about 1500 eggs 

in 24 hours. Drones are the fathers of the beehive. They are 

exclusively male and must mate with the queen. The brood 

from fertilized eggs grow to be queens or workers and the 

brood from non-fertilized eggs grow to be drones. Most of 

the tasks in each hive are delegated to the workers, 

including raising the offspring, taking care of the queen and 

male bees, cleaning the hive, adjusting the temperature of 

the hive, collecting nectar, pollination, etc. 

The queen commences the special mating dance. In 

this flight, drones follow the queen to mate with her in 

space. In each mating flight, the queen mates with 7-20 

drones on average. In each mating, sperms enter and are 

collected in the spermatheca. In fact, the mating flight can 

be likened to a set of displacements in space and time (the 

environment), wherein the queen flies at different points 

and with variable speed, hits drones that are at that point at 

that moment and randomly mates with them. Evidently, 

the queen has a certain level of energy at the outset of the 

mating flight, which is reduced and approximates zero at 

the end of the path, i.e., when the queen returns to the hive 

[22].  

Therefore, the HBMO algorithm can be summarized in 

the following basic steps: 

1) Queen's mating: The algorithm begins with the 

mating flight, wherein the queen (best solution) randomly 

selects its mates among the drones to fill her spermatheca 

and, eventually, produce the new brood. In this stage, the 

queen (the best solution) mates with any drone based on 

the following rolling probabilistic function: 

 
(22) 

where Prb (Q, D) is the probability of the addition of 

the sperm of drone D to the spermatheca volume of queen 

Q with the probability of successful mating.  is the 

difference between the queen’s and drone’s fitness 

function, S(t) is the queen’s speed at time t and  is a 

random value (0,1). The queen’s speed and energy are 

reduced after each mating based on the following Eqs. (23) 

and (24): 

 (23) 

 (24) 

where  is a coefficient between 0.1 and 1 for the 

queen's speed reduction and  is a coefficient between 0 

and 0.1 for the queen’s energy reduction following each 

mating. At the end of the mating flight, the queen’s energy 

and speed decrease to such an extent that they can be 

assumed zero. 
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2) Production of a new generation of children (new 

solutions): The new brood (test solution) is generated by 

replacing the drones’ genes with the queen’s genes based on 

the following:  

 (25) 

Here,  is a random value (0,1). 

3) Nurturing and promoting the brood’s generation: In 

this stage, workers nurture and promote the brood’s 

generation based on the following: 

 

(26) 

where  is generated randomly between 0 and 1, 

while  is a constant number. 

4) Queen selectivity: After arranging the brood as the 

new solutions on the basis of the degree of promotion in the 

generation based on the workers’ fitness function, the best 

ones are selected to replace the queen in the next mating 

flight if they have better fitness than the current queen. 

Otherwise, the current queen (the best solution) once again 

starts mating to produce the new brood (new solutions). 

5) Stopping the algorithm: If the conditions of the 

algorithm are met, the current queen is selected as the final 

solution. Otherwise, a new generation of drones is 

generated and the stages before satisfying the stop 

condition are iterated. 

In the following, to improve the performance of this 

algorithm, the local search method will be applied. 

 

2.5. Bacterial foraging algorithm 

This algorithm is based on the idea that, in nature, 

animals with poor foraging methods run a higher risk of 

extinction than those with successful foraging strategies. 

After many generations, animals and weak foraging 

methods are eliminated or transformed into better forms. 

E. coli that lives in the human intestine has a four-stage 

foraging method. These four stages are chemotactic, 

swarming, reproduction, elimination and dispersal [23]. 

1) Chemotactic 

Bacteria begin to move and swim in this stage. In fact, 

depending on their tail rotation, they hop and begin moving 

in a certain direction (tumble). If the amount of food is 

higher in the new path, the bacterium begins swimming in 

the same direction (swimming).  

Suppose we aim to find the minimum value of 

. Let θ be the bacterium’s location and J(θ) the 

amount of food in location θ. Assume that 

 respectively denote that the 

bacterium has good, neutral or bad food in location θ. To 

perform tumbling, a vector with unit length known as  

is generated. This vector is used to define the new direction 

for bacterium’s post-tumbling chemotactic. The new 

location of the bacterium is defined as: 

 
(27) 

where  indicates the location of the ith 

bacterium in the jth chemotactic stage, kth reproduction 

and ith elimination and dispersal.  is the bacterium’s 

chemotactic size in the direction of chemotactic . If the 

size of  in  is less than its size in 

, another chemotactic step with size  is taken 

in the direction  and the bacterium begins to swim in 

direction . This swimming continues until the size of 

J(θ) is reduced and to the maximum permissible number of 

swimming stages Ns. This indicates that the bacterium will 

continue moving in the same direction until it finds a better 

food environment. 

2) Swarming 

When a bacterium finds a better path for food, it 

attracts the other bacteria and they reach the main source 

of food more quickly. Swarming leads to the bacteria’s mass 

movement towards the food.  

It  is assumed as the set 

of bacteria’s locations, swarming is modeled as: 

 

(28) 

where  is a time-dependent function 

depending on the movement of all the bacteria and is added 

to the value of the cost function, . Therefore, 

bacteria try to find food, escape places without food, attract 

each other and, at the same time, do not get too close to 

each other; s is the total number of bacteria and p is the 

number of parameters that must be optimized and 

regarded as the bacterium's location coordinates in the p-

dimensional space. Moreover, ωattract, dattract, 

ωrepellant and hrepellant are the coefficients, for which 

proper values must be selected depending on the problem. 

3) Reproduction 

A half of the bacteria that fail to find proper food are 

eliminated; in the other half consisting of healthy bacteria, 
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each bacterium is divided into two which are located in the 

bacterium’s previous place. This keeps the population of 

bacteria constant.  

4) Elimination and dispersal 

The life of the bacterium population changes gradually 

as they consume food, or suddenly due to other factors. 

Events can kill or disperse the bacteria. This may initially 

disrupt the chemotactic towards food, but can also 

positively affect it, because the dispersal of bacteria may put 

them in places close to good food sources. Elimination and 

dispersal prevent the bacteria from entrapment in local 

optima. In each state of elimination and dispersal, any 

bacterium in the population runs the ped risk of 

elimination and dispersal. To keep the number of bacteria 

constants, if one bacterium is eliminated, a new bacterium 

is randomly placed in the search space. 

5) The hybrid method  

To promote efficiency, a combination of these two 

algorithms is used. The procedure of the hybrid method is 

as follows:  

Stage 1: The HBMO algorithm searches the search 

space and presents the best solution. 

Stage 2: The best solution obtained in Stage 1 is sent to 

the bacterial foraging algorithm. 

Stage 3: The bacterial foraging algorithm begins to 

optimize around the best solution sent from Stage 1. 

Sage 4: The best solution obtained from the previous 

stage is sent to the HBMO to once again find the best 

solution with more precision. 

Stage 5: If the stop condition is met, the algorithm 

converges, the iteration of these stages ends and the best 

solution is proposed. This hybrid method covers both the 

search space and the exploration space.  
 

3. Simulation results 
Simulation results are presented in this section. To 

this end, a 4-unit system is selected for analysis, which is 
introduced and presented in separate sections.  

 
3.1. The four-unit system 

This section presents the results of the four-unit 
system simulation. In this system, four generator units are 
considered, along with an ESS. Table (1) presents the 
parameters related to generation units and Table (2) shows 
the parameters of the ESS.

Table 1. Specification of studied DGs.  

 Unit 1 Unit 2 Unit 3 Unit 4 

Minimum power (kW) 75 60 25 20 

Maximum power (kW) 300 250 80 60 

High power slope (kW) 40 36 30 30 

Low power slope (kW) 40 36 30 30 

Minimum OFF time (h) 0 1 0 1 

Minimum ON time (h) 1 0 0 1 

Fixed cost ($) 0/0021 0/0042 0/0018 0/0034 

 Unit 1 Unit 2 Unit 3 Unit 4 

Variable cost ($) 16.83 16.95 20.47 23.6 

Fuel cost ($) 648/74 585/62 213 252 

Cost of commissioning ($) 500 170 150 2300 

Cost of decommissioning ($) 1100 400 350 5000 

Sox emission cost ($) 0/001 0/0021 0/0009 0/0017 

Nox emission cost ($) 8/4150 8/4750 10/37 11/8 

CO2 emission cost ($) 324/37 292/81 106/5 126 
 

Table 2. ESS parameters 

 ESS 

Maximum charging power (MW) 100 

Maximum discharging power (MW) 80 

Capacity (kWh) 250 

Cost of operation ($) 2000 

Efficiency (%) 85 

Figure (1) displays a comparison between the load in the 
initial state and after the DR in the four-unit system in 24 

hours. The amount of load shift per hour is equal to 1% of 
the total load in the same hour. 



           

 

Fig. 1. Comparison of 24-hour load in the four-unit system. 
 

Figure (2) illustrates the simulation results belonging to the 

state of charge and discharge (SOC/SOD) of the ESS in 

solving the proposed UC problem. The hours when the 

storage system is charged are on the negative y-axis and the 

hours when the storage system delivers power or discharges 

it into the system are shown on the positive y-axis. 

 

Fig. 2. SOC/SOD of the ESS 
 

Figure (3) also shows the state of energy (SOE) in the 

storage after simulation. As an example, by 4 o'clock, the 

energy capacity remaining in the storage has increased, 

which means that the storage is charged (Fig (2)). From 5 

to 7, according to Figure (3), the energy capacity in the 

storage is reduced, meaning that the storage is discharged 

(Fig (2)). 



           

 

Fig. 3. SOE of the storage system 
 

Figure (4) also shows the optimal output power of 

generation units in the next 24 hours. In this figure, it is 

well shown how much each unit should generate per hour 

to supply the grid load and obtain the minimum value of the 

objective function. 

 

Fig. 4. Output power of generation units in the four-unit system 
 



           
Figure (5) also shows all the power variables in the system. 

In this figure, the power of generation units, charging and 

discharging power of ESS and the grid load power within 

24 hours after simulation are presented in the four-unit 

system. 

 

Fig. 5. Output power of generation units along with load and charge and discharge of the ESS in the four-unit system 

 
Table (3) lists the multi-objective function of the problem 
for the next 24 hours. In this table, the effect of the ESS on 
the objective function of the problem is well shown. The 
cost function is $ 1727278 in the case of the storage system 

and DR system, $ 173743838 in the case of a storage system 
only and $ 2083293 in the case of no storage and no DR 
system. 

Table 3. Four-unit system simulation results 

 No ESS With ESS 
With ESS 
and DR 

Cost objective 
function ($) 

2083293 1737438 1727278 

Figure (6) shows the power output results without the ESS. 
Table (4) shows the power of generation units, charge and 
discharge capacity of the ESS, along with the value of the 
objective function. For example, at 1 o'clock when the grid 

load is 115.8 kW, unit 1 is off, units 2, 3 and 4 generate 60, 
80 and 60 kW, respectively, and the battery is charged by 
84.2 kW. In this way, for the next 24 hours, the optimal 
values of each of the decision variables are presented. 



           

 

Fig. 6. Power output of units without considering the ESS unit in the 4-unit system 

 

Figure 7 illustrates the power of the generation units, the 

charging and discharging capacity of the ESS and the value 

of the objective function. For example, at 1 o'clock when the 

grid load is 115.8 kW, unit 1 is off, units 2, 3 and 4 generate 

60, 72 and 50 kW, respectively, and the battery is charged 

by 68.4 kW. In this way, for the next 24 hours, the optimal 

values of each of the decision variables are given. 

 

Fig. 7. Four-unit system simulation results 



           
 

 
4. Conclusions 

Reduction of system operating costs is a key economic 

program in power systems. As such, programming for unit 

commissioning and decommissioning is of utmost 

importance. In general, the two objectives of "ensuring safe 

operation" and "facilitating economic operation" are of 

great importance. This paper proposed, modeled and 

solved the UC problem in smart grids by considering the 

reduction of economic costs and environmental problems. 

In this study, the UC problem in smart grids was solved by 

modeling a multi-objective function and considering ESS 

and load management. The proposed method was applied 

to a 4-unit system and the results showed the optimal 

performance of the proposed model. Herein, we used a 

hybrid algorithm of honey bee mating and bacterial 

foraging for optimization. The proposed method could 

provide suitable results in comparison with old models i.e., 

in Table 3, the proposed approach could provide the cost 

function value as $ 1727278 in the case of the storage 

system and DR system, $ 173743838 in the case of a storage 

system only and $ 2083293 in the case of no storage and no 

DR system. 
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