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➢ Saving money and time, decreasing traffic and pollution are the benefits of using Metro 

➢ The research aims to make the path shorter while maintaining adequate performance accuracy 

➢ An ideal data mining strategy and machine learning fundamentals are provided 

➢ To prioritize the aspects impacting, mathematical data and methodologies are used 

 

Article Info  Abstract 

Metro is considered one of the fastest and most efficient means of transport within the city in 
different countries, which reduces traffic and pollution and is more cost-effective and time-efficient. 
Routing transportation systems is one of the critical parts of determining the route and choosing 
the optimal route with minimal time and cost for users. Most of the methods that led to optimization 
in routing in the past, both in the airline and on the ground, are based on smart methods. It should 
be noted that the discovery of knowledge from the data is also essential to predict the path. Hence, 
data mining operations will also be considered. This research tries to provide an optimal data 
mining approach and machine learning principles to predict the route and select the optimal path 
in metro lines with minimum time, best speed, and minor errors in routing. Identifying the factors 
influencing the scheduling issue have uncertainty. This study tries to provide an optimal method 
based on data mining and machine learning principles using Fuzzy Logic and Technique for Order 
Preference by Similarity to Ideal Solution method to predict the priorities of effective factors in 
metro scheduling in Tehran and select the optimal route in metro lines with a minimum time, the 
best speed and the least error in routing. According to the findings, the top priorities have a 
significant influence on the preferred strategy in the metro plan. 
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Indices MILP Mixed-integer linear programming 
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MILP Mixed integer linear programming TOPSIS 
Technique for Order Preference by Similarity to Ideal 
Solution 

 

1. Introduction 
Today, the development of public transportation 

systems is considered a principled solution for large cities 

with more than one million people. In addition to the bus, 
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people are also using other systems due to the increasing 

cost of developing street networks. These systems are 

designed to achieve different goals, such as increasing 

travel comfort and safety, reducing air pollution and 
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protecting the environment, reducing travel time, and 

solving traffic problems caused by personal traffic. Metro is 

one of the public transportation systems with more 

attention in large cities due to its operating privileges. Since 

there are various routes on the subway, the movement of 

passengers should be optimized to reach the destination as 

quickly as possible. The input of most transportation 

systems is traffic volume. The total annual traffic volume is 

divided by 365 [1]. 

In this project, which identifies the factors of 

scheduling and prioritizing the effective factors to predict 

the subway route in Tehran, we try to provide a suitable 

method in routing with the minimum time and the best 

accuracy in walking distance between different stations. 
 

2. Literature Review 
The classification of a complex network of intra-city 

passages into groups and systems that have similar 
characteristics is called the classification of inter-urban 
passages. The road is a set of passages for motor vehicles, 
bicycles, and pedestrians. Interstellar roads are called 
streets. The motorway, which is physically fully segregated 
along the entire length of the traffic, and is designed so that 
traffic flows in it without stopping, is called a freeway. In 
order to provide such conditions on these roads, 
intersections should be non-level, and the way of entering 
and leaving the vehicles is fully controlled and based on the 
correct design. Trails that connect the connection between 
residential and residential units, connecting them to the 
street and the player, are local roads. Local passages should 
not be placed in transit traffic. The traffic volume is the 
number of vehicles that pass through a certain time in a 
time unit (hour). The volume of traffic that travels through 
a specific day during a specific time is called daily traffic 
volume. The maximum number of vehicles that can be 
traversed over one hour with a certain quality of traffic from 
a certain point in the way is possible. A commonly used one-
way route that connects two different tugs is called a ramp 
or shingles [2]. 

Recently, various methodologies have presented 
numerous models and algorithms to handle the metro 
scheduling issue. The coordinate timing method is 
recommended in [3] to indicate the ratio of short-term 
metro services to full-time metro services. Researchers 
showed that the 1:1 scheduling performance pattern 
outperformed full-time metro scheduling for the OD matrix 
acquired from a survey, implying a short rotation service. It 
indicates that it can better fulfill passenger demand than 
two full-length trips. A short rotation model for optimizing 
rates, vehicle dimensions, and rotating terminals for quick 
services and entire subways in subway corridors has been 
created in [4]. In this work, only a single operational period 
is considered. At the same time, in [5], the service patterns 
have been focused on a metro corridor during different 
periods of operation, taking into account the short rotation 
strategy and size. Metro variables reduce user and operator 

costs. In [6], an approach is presented for determining 
where the rotation terminal for a short rotation service is 
located and whether a metro is a short rotational service on 
a real-time two-way metro line. In [7], the placement of 
short-turn services to handle the scenario of interruption, 
such as the emergence of a foundation for fast-moving 
transportation systems, to lower passenger waiting time, is 
described. In [8], they also investigated a condition with 
complete obstruction. They offered a linear mixed-numeric 
linear programming model for calculating the metro 
program by adopting a short rotation strategy. 

Also, to optimize the issue of metro planning with a 
short rotation strategy in metropolitan rail transportation 
systems, and in [9], a proper programming model for 
nonlinear mixing has been implemented to minimize 
passenger trip expenses and operational costs. In [10], a 
model aimed at minimizing trains has created passengers' 
performance by optimizing the spatial distribution of space 
to optimize and balance the program. Predicting passenger 
flow and metro levels, [11] discusses different operating 
patterns with various coordinate program modes and 
selects a 1-line rotation station in Shanghai, the city's first 
urban rail line with a short rotation strategy. Passenger and 
metro flows have been evaluated in [12], utilizing a short 
rotation approach focusing on a particular line in the urban 
rail transport network to optimize the metro program by 
restricting the range of subways and variation of the actual 
passenger capacity. A multi-faceted model has been 
created. In [13], the cause of passenger flow imbalance and 
feasibility analysis of the operational model with a short 
rotation strategy has been analyzed. It evaluates the metro 
schedule with the loading factor. 

The subway schedule is also important for planning 
because the number of subways is limited. In [14], a 
combined optimization approach for metro planning and 
operational planning issues was developed. 

In [15], they created a correct programming model to 
find an efficient rotation of the railroad on a collection of 
subways using a branch and pricing method. [16] proposed 
a model for optimal metro allocation to minimize capacity 
shortages during busy hours. The optimal solution is more 
effective than manual planning. In [17], they developed a 
model that included many features, including metro, 
inspection, operation route, and operation. The issue of 
deadlocks is considered in [18], and a model has been 
proposed to determine the ideal vehicle frequency value 
and capacities, a combination of caps and short conversion 
to an integrated fleet management strategy. 

Forecasts have been made on subway routes and 
urban and inter-urban railroads in various aspects and 
fields. For example, in [19], a business network is provided 
to predict possible errors during weather instability. A 
weather forecast has been made to impact railroads, 
utilizing a weather data set and a rails status data set. In 
another study, presented in [20], prediction of scheduling 
contradictions in high-speed railway lines based on fuzzy 
knowledge has been carried out. The research suggests 
creating a prediction system for scheduling railway lines for 
the presence of trains or subways on the rails. In [21], the 



           
route selection is provided with operational information in 
metro networks. This research is divided into two parts. 
Initially, it discusses the choice of the route optimally. Then 
it provides a very optimal method. 

Other research has also been done in other areas of 
transportation systems. In [22], regression uses population 
parameters, vehicle ownership, households, and employees 
in a family to estimate traffic volumes in one year. [23] 
provides a multiple regression model using the number of 
lines, land use, path type, and economic conditions. [24] 
used the alternating nervous system to estimate 63 
locations on the Minnesota Highway Network in the United 
States. The result of this study is that the approach of using 
the neural network in later traffic estimation and 
forecasting methods is that the neural network operates in 
the same way as other classical methods of estimating 
traffic volumes when the counting stations are properly 
classified. And better than them. 

[25] addresses the approach of identifying non-return 
events in urban traffic. The proposed method for 
identifying and predicting traffic flows is based on 
nonlinear analysis using the probabilistic neural network. 
It is planned to carry out operations for forecasting traffic. 
Three patterns are considered temporal: sustainability, 
non-consistency, and uniqueness (non-linearity). In [26], 
in predicting large-accident crashes in real time, their use 
is based on the analysis of the entropy of the gray-matter 
relationship and the probabilistic neural network. The 
main criterion of this study is to show the turbulence in the 
traffic flow, which is analyzed based on the entropy of the 
gray-matter relationship and is used to detect and predict 
the real-time crashes on the road in real-time from the 
probabilistic neural network. 

In [27], a behavioral comparison of route selection has 
been carried out in subway networks based on a series of 
criteria, including time, passenger transportation, 
congestion, road recognition alignment, and metro area 
demography. The route selection model has been applied to 
London Underground in London as well as the Santiago 
metro in Madrid, Spain. A general comparison has been 
made between travelers' decisions between short routes on 
these two different metro lines. Also, the short routes to the 
two metro lines have been compared. It has been generally 
considered that passengers on the London subway, walking 
on the subway edge to get a more suitable place to sit 
further, care to get faster. However, travelers in the 
Santiago Metro prefer to wait. To reach the subway and get 
to the destination quickly. 

One of the first researches in the doctoral thesis's 
routing the transportation lines is presented in [28], which 
presents the problem as a way of finding the least cost 
between the origin and destination and modeling it. The 
method presented in [28] was improved in [29] presents a 
maximum coverage path and the shortest route model with 
a maximum population. Both models evaluate the options 
concerning construction costs and social benefits and are 
modeled in the form of integer programming. In [30], the 
forbidden search algorithm considered locating a transport 
line. The objective function of the proposed algorithm is to 

maximize the population coverage of the path. In [31], a 
model has been developed in which a vehicle has become 
commonplace, a competitor of the vehicle. In this study, 
users assume that transport systems are chosen in a way 
that minimizes their costs. In [32], the goal is to maximize 
the population covered by the route. In [33], the concept of 
travel coverage for the station has been discussed. A 
solution to the routing problem has been developed using 
an evolutionary method and a maximum length limit. 

A short turning approach for train schedule 
optimization on an urban rail transit route was presented 
in [33]. (The case of Beijing subway line 4). Initially, this 
research created a MINLP model for train schedules. Short-
turning and full-length train services are optimized based 
on the preset headway determined by the passenger 
demand analysis. To propose appropriate route scheduling 
in the railway station, the MINLP model is changed into a 
MILP model based on many transformation features.  

[34] proposes a flexible metro train scheduling 
technique that saves energy costs and passenger wait time. 
This technique initially developed a nonlinear integer 
programming model by considering various system 
limitations such as inventory train constraints, train 
loading capacity constraints, and train type constraints. 
Then, complexity analysis and decomposition approaches 
are described to solve the model. An MTS with PE was 
created to identify roughly optimum solutions for the 
specified model. A series of numerical examples were used 
to validate the efficacy and performance of the suggested 
methodologies on a simple metro line and the Beijing Metro 
Yizhuang Line. In [35], collaborative optimization is 
proposed for metro train scheduling and connections 
combined with a passenger flow control strategy. The MILP 
model and Lagrangian relaxation-based heuristic approach 
are designed to decompose the original problem. The 
proposed collaboration of this research improved metro 
line operation efficiency and safety.[36] 

 

3. Proposed Method 
This study's urban rail transit route is defined as a 

double-track rail line, as illustrated in Figure 2. Train 
operation in one direction is unaffected by train operation 
in the other. Train service directions are indexed 
differently. Three depots, A, B, and C, are connected to 
stations 1, J, and P. The way from station 1 to P is called the 
up direction, whereas the route from station P to 1 is called 
the down direction. Area 1 contains the block portion from 
station J+1 to station P. Area 2 includes the block section 
from station J+1 to station P. Area 2 designates the block 
portion between stations 1 and J. Area 2 can accommodate 
both short-turning and full-length train services. However, 
Area 1 can only accommodate full-length train services. 
Short-turning train services, in particular, are 
characterized as train services that only run-in area 2. The 
operating period of the urban rail transit line is divided into 
multiple time intervals based on the passenger traffic flow, 
which is indexed by 𝑘. Also this research introduce 𝑖 and 𝑙 
to index a train service in the up and down direction with 



           
𝑖 ∈ 𝑆𝑠𝑒𝑟𝑣𝑖𝑐𝑒

𝑢𝑝
= {1,2, … , 𝐼𝑡𝑜𝑡𝑎𝑙

𝑢𝑝
} and 𝑙 ∈ 𝑆𝑠𝑒𝑟𝑣𝑖𝑐𝑒

𝑑𝑜𝑤𝑛 = {1,2, … , 𝐼𝑡𝑜𝑡𝑎𝑙
𝑑𝑜𝑤𝑛} 

which 𝐼𝑡𝑜𝑡𝑎𝑙
𝑢𝑝

 and 𝐼𝑡𝑜𝑡𝑎𝑙
𝑑𝑜𝑤𝑛 denote the total number of train 

services for both directions and formulated as Eq (1) and 
(2). 

𝐼𝑡𝑜𝑡𝑎𝑙
𝑢𝑝

= ∑ 𝐼𝑢𝑝,𝑘

𝐾

𝑘=1

 (1) 

𝐼𝑡𝑜𝑡𝑎𝑙
𝑑𝑜𝑤𝑛 = ∑ 𝐼𝑑𝑜𝑤𝑛,𝑘

𝐾

𝑘=1

 (2) 

Where 𝐾 is the number of time intervals. 𝐼𝑢𝑝,𝑘 and 

𝐼𝑑𝑜𝑤𝑛,𝑘  denote the number of train services during the 𝑘’th 

time interval in the up and down direction, respectively. It 
is noteworthy that the important priorities for scheduling 
in the Tehran metro include the existing metro restrictions, 
the metro load capacity limit, the metro type restrictions, 
the metro routes, and the metro intersection to change lines 
and distances.

`  
Fig. 1. The design of an urban rail transportation route 

 
There are numerous scenarios for train operations on 

the urban rail transit route. Figure (2) depicts one possible 
operation for a short-turning train service in the up 
direction that departs from Depot A. State 1 shows a quick 
turnaround train service returning to Depot B. In State 2, a 
short-turning train service arrives at the destination 
station, followed by the connecting train service, which 
returns to Depot A. In State 3, the short-turning train 
service terminates at station J, and the connecting train 
service terminates at its target stop, station 1. For full-

length train services operating in the urban rail transit line, 
Figure (2), b part also shows several situations that are 
similar to Figure (2), apart. Accordingly, there are also 6 
situations for the operation of train services in the down 
direction. Figure (2), b portion depicts numerous 
circumstances comparable to Figure (2), aside from full-
length train services running on the urban rail transit line. 
As a result, there are six scenarios for the operation of train 
services in the downward direction.



           

 

 

Fig. 2. Conceivable scenarios for railway service operations 
 
The train schedule optimization problem's major 

decision factors are: 
✓ Train service departure and arrival times in both 

the origin and destination stations. 
✓ Train service types, such as whether a train service 

is a short turning one or a full-length one 
✓ Connection affinity among train services in the up 

and down trends.  
Constraints should include departure and arrival 

times for each train service, train orders for train services, 
headways for areas 1 and 2, and a train circulation plan. 
Because the running times and dwell periods are constants 
that the headway at the interstation should be identical to 
the headway at the origin station, this study solely 
addresses the headways at the origin and destination 
stations.  

It is estimated that 5 train services will be provided, 
with varied passenger needs in areas 1 and 2, where the 
values are in the 360s and 180s, respectively. Passengers in 

area 2 want to board a train with a headway of 180 seconds, 
but passengers in area 1 only require a headway of 360 
seconds. Two patterns may be formed with a single 
frequency for a train operating pattern without a short 
turning strategy. Pattern 1 is designed to meet the 
passenger demand in Area 1, with a departure time of 360 
seconds. It can result in a 180s x 5 increase in headway, as 
shown by the headway difference in area 2. Pattern 2 
focuses on passenger demand in area 2, and the departure 
time headway is 180s. It has the same effect as Pattern 1. 
Nevertheless, the passenger demand for both locations may 
be met when the short-turning train services depart 
between two consecutive full-length train services (3).  

The train schedule optimization problem's major 
decision factors are: 

✓ Train service departure and arrival times in both 
the origin and destination stations. 

✓ Train service types, such as whether a train service 
is a short turning one or a full-length one 



           
✓ Connection affinity among train services in the up 

and down trends.  
Constraints should include departure and arrival 

times for each train service, train orders for train services, 
headways for areas 1 and 2, and a train circulation plan. 
Because the running times and dwell periods are constants 
that the headway at the interstation should be identical to 
the headway at the origin station, this study solely 
addresses the headways at the origin and destination 
stations.  

It is estimated that 5 train services will be provided, 
with varied passenger needs in areas 1 and 2, where the 
values are in the 360s and 180s, respectively. Passengers in 
area 2 want to board a train with a headway of 180 seconds, 
but passengers in area 1 only require a headway of 360 
seconds. Two patterns may be formed with a single 
frequency for a train operating pattern without a short 
turning strategy. Pattern 1 is designed to meet the 
passenger demand in Area 1, with a departure time of 360 
seconds. It can result in a 180s x 5 increase in headway, as 
shown by the headway difference in area 2. Pattern 2 
focuses on passenger demand in area 2, and the departure 
time headway is 180s. It has the same effect as Pattern 1. 
Nevertheless, the passenger demand for both locations may 
be met when the short-turning train services depart 
between two consecutive full-length train services (3). 

 
Fig. 3. Both passenger needs in zones 1 and 2 can be met. 

So far, the most important factors influencing the 
scheduling of Tehran's two subway lines have been 
considered. Now it is necessary to model it with a combined 
Fuzzy TOPSIS approach. In this approach, n input data is 
assumed to be in cluster m, and the clusters have a regular 
one-dimensional or two-dimensional arrangement. The 
weight vector for each cluster is a sample vector of input 
patterns linked to that cluster. Suppose the data in a class 
has the characteristics shown in Table (1) with the 
specification. In that case, the values of these attributes in 
each class are shown in Table (2).

Table 1 an example of an information about a data contained in one of the classes 

Feature 4 Feature 3 Feature 2 Feature 1 
Features 

Properties 

numerical numerical Regular Regular Type 

0.4 0.1 - - Mean 

  {v2,1, …, v2, M} {v1,1, …, v1, N} Value Domain 

- - v2,4 v1,1 

Value with 

maximum 

iteration 

Table 2. the values of the attributes of each class . 
Feature 4 Feature 3 Feature 2 Feature 1 

0.4 0.1 v2,4 v1,1 

 
In addition to the definition for replacement with a 

simple competition, another definition of classifying is 
proposed to be consistent with the condition of the 

combination of data, the definition of the appropriate 
distance criterion. If two data are 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑁} and 
𝑌 = {𝑦1 , 𝑦2, … 𝑦𝑁}, the distance criterion defined for these 



           
two data, which is an extension of the Euclidean relation, is 
given by Eq (3) is defined. 

𝑑(𝑋, 𝑌) = 𝛼 . 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑛𝑢𝑚(𝑋), 𝑛𝑢𝑚(𝑌)) 

+𝛽. 𝑑𝑖𝑓𝑓(𝑐𝑎𝑡(𝑋), 𝑐𝑎𝑡(𝑌)) 
(3) 

In equation (3), (𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑛𝑢𝑚(. )) is Euclidean 
distance calculated between two data with numerical 
properties, the data obtained by the function 𝑛𝑢𝑚(. ) . In 
fact, the 𝑛𝑢𝑚(. ) Function of a given data only looks at its 
numerical property and can be represented as Eq (4). 

𝑛𝑢𝑚(𝑋)
= {𝑥𝑖𝜖𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝑒𝑡(𝑋)|𝑥𝑖  𝑖𝑠 𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙 ; 𝑖 𝜖[1, |𝑋|} 

(4) 

Also, in (4), a given data's cat (X) function only looks 
at its characteristic properties. It can be defined as Eq (5). 

𝑛𝑢𝑚(𝑋)
= {𝑥𝑖𝜖𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝑒𝑡(𝑋)|𝑥𝑖  𝑖𝑠 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑎𝑙 ; 𝑖 𝜖[1, |𝑋|} 

(5) 

As a result, function 𝑑𝑖𝑓𝑓(𝑋) calculates the distance 
between the attributes of the field and the best path to 
choose. This calculation is such that the number of 
characteristic features with different values is counted, and 
the result is divided by the number of these attributes. In 

equation 5), the parameters 𝛼, 𝛽𝜖[0,1]   determine the 
weights of each of the two numerical and group numbers in 
determining the distance of data. It should be noted that, 
after separating the features into different classes, action 
must be taken on how to handle each class. By viewing the 
types of paths for each group, it is determined which groups 
and criteria should be included. For this purpose, the 
classes are correctly predicted. 

Another important point about the rules is that the 
TOPSIS method is not yet mentioned is how they are 
generated and the calculation of probabilities based on the 
type of data to be considered, which is discussed below. 
With respect to each of the data 𝑙𝑘  of the set of closest 
features, a rule is produced in the form of a multi-criteria 
decision-making algorithm for TOPSIS method. Suppose 
the properties of 𝑙𝑘  are separated into two parts of the 
decision and the properties. In that case, the whole set of 
properties can be represented as 𝐼𝑘 = [𝑓𝑖 , … 𝑓𝑛, 𝑑𝑖 , … 𝑑𝑚]  . In 
this representation, 𝑓𝑖  represents features such as the type 
of connection and 𝑑𝑖  represents the decision and accepts 0 
or 1. Obviously, for each data, only one decision is made, so 
from 𝑑𝑖 to 𝑑𝑚, only one of them can be 1. All rules are given 
in the form of Eq (6) for these data. 

 

𝑅1: 𝑓1, … , 𝑓𝑛>
𝑆𝑖  

𝑅2: 𝑓1, … , 𝑓𝑛 → 𝑆𝑖  

. 

. 

. 

𝑅2𝑛+1: 𝑓1, … , 𝑓𝑛 → 𝑆𝑖  

𝑖 ∈ [1, 𝑚] 

(6) 

As it is clear from equation (6), a decision may be made 
for a few data. Each law is evaluated by calculating the 
probability values. The formulas expressed in calculating 
probabilities are suitable for the data, and numerical data 
are difficult to obtain here. Based on this method, it is 
possible to identify new data that is not in the dataset and 
not proportional to paths and to choose the best route from 
existing data as paths. 

Now that TOPSIS rules and effective priorities in 
metro scheduling have been identified, due to uncertainty 
in these two issues, fuzzy logic comes into play, which is a 
model based on fuzzy TOPSIS to solve the main challenge 
of identifying and optimizing effective priorities to solve the 
metro scheduling in Tehran. In the fuzzy TOPSIS 
algorithm, it is assumed that 𝑀 is an input, and 
𝑆1, 𝑆2, 𝑆3, … , 𝑆𝑛 are the language variables that have 
membership functions or 𝑁 that are used to optimize the 𝑀 
parameter. Each membership function is known based on a 

language variable. It is assumed that 𝑆𝑖
[𝑗]

, 𝑉𝑖
[𝑗]

, and 𝑃𝑖
[𝑗]

 are 

the current metro position, metro speed, and 𝑖’th the best 

previous metro location, respectively. 𝑃𝑔𝑏
[𝑗]

 is the best global 

position 𝑗’th at time 𝑡 and a definite iteration round 
𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑡. In the fuzzy TOPSIS algorithm, it is assumed 
that the search behavior is influenced by a neighbor's 
overcrowding. Specifically, it should be considered to 

provide the best national position of 𝑃𝑔𝑏
[𝑆]

 and the best 

previous position of metro 𝑃𝑖
[𝑠]

 at the entrance of 𝑠’th to 

evaluate the speed of metro 𝑗’th that a structure in the same 
way. Immigration classification creates a circle that is in the 
form of an Eq (7). 

𝑆 = {
𝑀    𝑖𝑓 𝑗 = 1

𝐽 − 1         𝑖𝑓 𝑗 = 2,3, … , 𝑀
} (7) 

Then, the fuzzy TOPSIS rules section is created based 
on the Eqs (8) and (9) with an initial manipulation in this 
research that can perform the maximum optimization in 
the prioritization operation of the factors affecting metro 
scheduling. 

𝑉𝑖
[𝑗]

(𝑡 + 1) = 𝑘[𝑗]. [𝑤𝑖
[𝑗]

. 𝑣𝑖
[𝑗]

(𝑡)

+ 𝑐1
[𝑗]

. 𝑟𝑎𝑛𝑑1. (𝑃𝑖
[𝑗]

− 𝑆𝑖
[𝑗]

(𝑡))

+ 𝑐2
[𝑗]

. 𝑟𝑎𝑛𝑑2. (𝑃𝑔𝑏
[𝑠]

− 𝑆𝑖
[𝑗]

(𝑡))] 

(8) 

𝑆𝑖
[𝑗]

(𝑡 + 1) = 𝑆𝑖
[𝑗]

(𝑡) + 𝑉𝑖
[𝑗]

(𝑡 + 1) (9) 

 
In these equations, 𝑗 is the number of metro densities 

in areas 𝐴 and 𝐵, 𝑐1 and 𝑐2 are the cognitive and social 
parameters associated with the speed operator, 𝑟𝑎𝑛𝑑1 and 
𝑟𝑎𝑛𝑑2 are random numbers that is evenly distributed [0,1]. 
Also, super-script [𝑠] displays the circular migration 
specified in Eq (7). The weight inertia approach as Eq (10) 
determines the inertial weighting function for metro speed 
𝑖. 



           

𝑤𝑖 = 𝑤𝑚𝑎𝑥 −
𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛

𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑚𝑎𝑥

. 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 (10) 

In this case, 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑚𝑎𝑥 is the maximum repetition 
cycle and 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 is the repetition cycle. The role of the 
inertial weighting function is crucial for the convergent 
behavior of the fuzzy TOPSIS algorithm. It is used to control 
the effect of the previous speed history on the current 
history. Accordingly, the weighted performance of the 
inertia regulates a balance between global and local 
exploration capabilities. In this study, in order to ensure the 
convergence of the fuzzy TOPSIS algorithm, the contraction 
coefficient 𝑘 is confirmed as Eq (11). 

𝑘 =
2

|2 − 𝜑 − √𝜑2 − 4𝜑
    ,     𝜑 = 𝑐1 + 𝑐2   ,     𝜑 > 4 (11) 

𝑘 exists when the contraction criterion controls the 

system's behavior, and the parameter ∅ has a series of 
properties. This system does not differ in the actual amount 
of search space. It can eventually converge, and it can 
effectively search different and discrete areas of search 
space by preventing premature convergence. 𝑖 ‘Th metro 
positions belong to the 𝑗 ‘th congestion in the 𝑛-
dimensional search space with the minimum and 
maximum positions expressed by vectors are limited, which 
is in the form of Eq (12). 

[𝑆𝑖
[𝑗],𝑚𝑖𝑛

, 𝑆𝑖
[𝑗]𝑚𝑎𝑥

] ,   

(𝑗 = 1,2, … , 𝑀)  ,    (𝑖 = 1,2, … , 𝑁) 
(12) 

The speed of the 𝑖 ‘th metro belonging to the 𝑗 ‘th 
density in the next search space is calculated by Eq (13). 

[−𝑉𝑖
[𝑗],𝑚𝑎𝑥

, 𝑉𝑖
[𝑗],𝑚𝑎𝑥

] ,      (𝑗 = 1,2, … , 𝑀)  ,    (𝑖 

= 1,2, … , 𝑁) 
(13) 

Where the velocity vector is composed of maximum 
terms such as Eq (14). 

𝑉𝑖,𝑙𝑔
[𝑗],𝑚𝑎𝑥

=
𝑆𝑖,𝑙𝑔

[𝑗],𝑚𝑎𝑥
− 𝑆𝑖,𝑙𝑔

[𝑗],𝑚𝑖𝑛

𝑁𝑟
    ,    ,      (

𝑗
= 1,2, … , 𝑀

)  ,    (𝑖

= 1,2, … , 𝑁)       ,    (𝑙𝑔 = 1,2, … , 𝑛)  

(14) 

Here, 𝑁𝑟 is the number of searches for subways. It is 
an important parameter in the fuzzy TOPSIS algorithm. A 
small 𝑁𝑟 facilitates global exploration (search for new 
areas). At the same time, many tend to facilitate local 
exploration (accurate adjustment of the current search 
area). The right amount of  𝑁𝑟 usually balances global and 
local exploration capabilities, thus reducing the number of 
repetitions needed to find the optimal solution. 

The M density problem is employed in the situation of 
multi-criteria functions. Each congestion applies to each 
target performance. The implementation of the fuzzy 
TOPSIS algorithm assumes that each of the densities of 𝑀 
in one of the densities of 𝑀𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟  that are in a subway line 

is evaluated. After modeling and optimizing the timing 
factors, the TOPSIS method enters the fuzzy logic section to 

select the most optimal answers. Once solutions based on 
the estimated set are found, it is necessary to display one of 
them for the final evaluation and optimization output. 
From the decision maker's point of view, a posterior 
approach is used to select a solution from all optimum 
options. It needs a high-level decision-making procedure 
that selects the best answer from a restricted collection of 
optimal solutions employing all i. Relevant MADM 
attributes are frequently employed in the posterior 
evaluation of optimum solutions to pick the best one. The 
problem of deciding between standard choices is generally 
referred to as decision-making on many features, which is 
a practical approach to rank or pick an alternative to a finite 
set of other possibilities owing to various features; it is 
typically contradictory. The chosen attribute provides the 
maximum level of pleasure for all relevant qualities, and the 
term "attribute" is employed as a target, criteria, or cost. 
Many methods have been developed to select the best 
compromise solution for multiple attribute problems or 
criteria. The concept of TOPSIS has been used to find the 
best compromise solution in this research in the fuzzy 
section. Because the viable, practical design should be close 
to the ideal solution but distant from the negative ideal 
solution, the TOPSIS approach was developed. It has 
become a typical strategy for making multi-objective 
decisions with few possibilities. It is assumed that 𝑅 =
{𝑅𝑖𝑗|𝑖 = 1,2, … , 𝑛 ; 𝑗 = 1,2, … , 𝑚} and 𝑛 and 𝑚 are the 

number of optimal solutions and the number of targets, 
respectively. In this relation, 𝑛 × 𝑚 is the decision matrix, 
and 𝑅𝑖𝑗 is the efficiency ratio of 𝑋𝑗 (optimal solution) 

according to the property 𝐴𝑖 (the value of the objective 
function). To determine the weight of targets by measuring 
entropy, the decision matrix requires normalization for 
each 𝐴𝑖target as Eq (15). 

𝑝𝑖𝑗 =
𝑅𝑖𝑗

∑ 𝑅𝑝𝑗
𝑛
𝑝=1

 (15) 

As a result, a normal decision matrix represents the 
relative performance of the alternatives obtained as Eq (16). 

𝑝 = [

𝑝11 … 𝑝1𝑚

… … …
𝑝𝑛1 … 𝑝𝑛𝑚

] (16) 

The amount of decision information available in 
equation (16) and emitted is characteristic of 𝐴𝑗 (𝑗 =

1,2, … , 𝑚) and, therefore, can be measured by the value of 
entropy, which is related to Eq (17). 

𝑒𝑗 =
−1

𝑙𝑛 𝑛
∑ 𝑝𝑖𝑗  𝑙𝑛 (𝑝𝑖𝑗)

𝑛

𝑖=1

 (17) 

The degree of convergence or 𝑑𝑗 is the mean of the 

inherent information in each property of 𝐴𝑗 (𝑗 = 1,2, … , 𝑚) 

is calculated as Eq (18). 

𝑑𝑗 = 1 − 𝑒𝑗  (18) 



           
The normalized value of the target weight 𝑣𝑖𝑗  is also 

calculated as Eq (19). 

𝑣𝑖𝑗 = 𝑤𝑖𝑝𝑖𝑗  (19) 

After determining the performance ranking of the 
alternative options and the target weight of the features, the 
next step is to collect them to produce a total performance 
index for each option. This collection process is based on 
the ideal positive solution, i.e., 𝐴+, and the negative ideal 
solution, 𝐴−, which are calculated by two Eqs (20) and (21), 
respectively. 

𝐴+ = (𝑚𝑎𝑥(𝑣𝑖1), 𝑚𝑎𝑥(𝑣𝑖2) , … 𝑚𝑎𝑥(𝑣𝑖𝑚)) 

= (𝑣1
+, 𝑣2

+, … , 𝑣𝑚
+)  

(20) 

𝐴− = 𝑚𝑖𝑛(𝑣𝑖1) , 𝑚𝑖𝑛(𝑣𝑖2) , … , 𝑚𝑖𝑛(𝑣𝑖𝑚)) 

= (𝑣1
−, 𝑣2

−, … , 𝑣𝑚
−) 

(21) 

The distance between the options can be measured 
with a 𝑛-dimensional Euclidean distance. The separation of 
each option from the ideal solution is as described in Eq 
(22). 

𝑑𝑗
+ = {∑(𝑣𝑗𝑖 − 𝑣𝑖

+)
2

}
1
2    ,      𝑗 = 1,2, … , 𝑛

𝑚

𝑖=1

 (22) 

Similarly, each alternative is separated from the 
negative answer as given in Eq (23).  

𝑑𝑗
− = {∑(𝑣𝑗𝑖 − 𝑣𝑖

+)
2

}
1
2    ,      𝑗 = 1,2, … , 𝑛

𝑚

𝑖=1

 (23) 

The relative proximity to the ideal solution to replace 
𝑋𝑗 is calculated as Eq (24) with respect to 𝐴+. 

𝐶𝑗 =
𝑑𝑗

−

𝑑𝑗
+ + 𝑑𝑗

−    ,     𝑗 = 1,2, … , 𝑛 (24) 

When 𝑑𝑗
− ≥ 0 and 𝑑𝑗

+ ≥ 0 are large, it is clear that 𝐶𝑗 ∈

[0,1]. To do this, the TOPSIS model selects an alternative 
with a maximum 𝐶𝑗 in descending order to select an optimal 

function. It is clear that the alternative to 𝑋𝑗 should be close 

to 𝐴+ relative to 𝐴− as the 𝐶𝑗 approach. 

 

4. Simulation and Results 
The data are generally 48565 rows and 11 columns. 

The data is from line 1 and subway 2 of Tehran, which is for 
a month. In this dataset, features such as time traffic, the 
traffic volume of passengers in a specific station, the 
number of metro lines in the line, the distance between 
stations, and the presence or absence of another line in a 
line to the other lines are considered. On each line, 21 
stations are assumed. We also assume the speed of the 
subway is between 100 and 250. The number of lines 
connected to the subway lines is 5 lines. The program's 
output window is generally shown in Figure (4).

 
Fig. 4. Output Window and Parametric Settings Variables 

 
Once the parameters have been set, the run is 

performed. At run time, the left window in Figure (4) 
displays the number of stations along with the lines 
showing the subway paths at the station. With the initial 
settings shown in Figure (4), it is clear that the 
implementation is performed, as can be seen in Figure (5), 
where the station's position is located. 



           

 
Fig. 5. Number of stations and their deployment 

After applying the fuzzy TOPSIS approach and 
identifying decision rules and criteria, Figure (6) identifies 
the factors affecting scheduling to predict optimal metro 
routing between lines and stations. 

 
Fig. 6. Metro Routing Between Lines and Stations 

When it comes to decision-making algorithms, 
displaying the output of the dispersion of fit is essential. 
Figure (7) shows the dispersion diagram at the optimal 

metro route after scheduling, and Figure (8) shows the 
fitting diagram at the optimal metro route after scheduling.  

 
Fig. 7. Dispersion plot in optimal metro route after scheduling 

 

 
Fig. 8. fitting diagram during metro optimal routing after 

scheduling 

The following is a series of evaluation criteria 
calculated based on the basic formulas. The evaluation 
results can be found in Table 3 based on accuracy, 
sensitivity, mean squared error, peak signal-to-noise ratio, 
and signal-to-noise ratio.

 
Table 3. Results of Evaluation 

SNR (dB) PSNR (dB) MSE 
Sensitivity (Error 
Rate %) 

Accuracy  
(Error Rate %) 

5.5918 55.1205 0.2000 0.7248 6.0606 

 
As a result of the table, the accuracy error value is 

6.0606%. The proposed approach has 93.9394% correct 
accuracy in predicting the optimal route for the subway 
between the lines (21 stations). The sensitivity error rate is 
also 0.7248%, which is 99.2752% sensitivity.  

 
5. Conclusions 

By creating metro lines, less time is spent on road 
traffic, and due to the metro performance points, it is more 
important than other transportation systems. Proper 
routing and location of lines and stations are essential to 
create a proper metro network. To do this, it is necessary to 

identify a series of factors affecting the scheduling to have 
metro lines with minimal traffic. One of the most common 
methods in line routing is using expert opinions, 
engineering judgments, and field studies in line with the 
selected corridors of comprehensive transportation and 
traffic studies. Another method of routing is the use of 
mathematical models in which personal opinions are not 
allowed.   The whole routing process is done by 
mathematical data and methods based on prioritizing the 
factors affecting the scheduling structure. This study also 
tries to prioritize the factors influencing the scheduling of 
the Tehran metro by providing an optimal method to 



           
perform the shortest route with the best time and sufficient 
accuracy in performance. The proposed method uses a 
fuzzy TOPSIS approach. The results represented that the 
main priorities, which include existing metro constraints, 
metro loading capacity constraints, metro type constraints, 
metro routes, and metro intersections to change lanes and 
distances, have a high impact on the desired approach in 
the metro schedule. However, the most important of these, 
in turn, is the capacity of the metro to load in one direction 
when reaching the intersections to change the route over 
long distances. The subway type impacts the fuzzy TOPSIS 
structure for scheduling the least. 
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