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Highlights 

➢ The effect of fly ash and micro-silica on the compressive strength of HPC concrete was investigated. 
➢ Two hybrid models based on RBFN and tuned by ALO and AOA optimization algorithms were developed. 
➢ The prediction of compressive strength through artificial intelligence method delivers a valuable model. 
➢ The training phase of the AORBFN model performed best in predicting compressive strength. 
➢ The best R2 value for the AORBF and the ALRBF model are 0.9706, and 0.9669 in the test phase. 

 

Article Info  Abstract 

The additives’ usage like micro-silica (MS) and fly ash (FA) through partial substitution of cohesive 
materials in concrete design has positive impacts on the concrete’s mechanical properties, reducing 
concrete production cost and declining environmental pollution. The concrete’s compressive 
strength is the main factor considered in the mechanical properties of the concrete, which is 
estimated by experimental efforts or non-destructive models as developed artificial models. In the 
present work, two hybrid radial base neural networks (RBFN) coupled with arithmetic optimization 
algorithm (AORBFN) and antlion optimization algorithm (ALRBFN) were developed for the 
prediction of compressive strength. The models' variables contain the binder, fly ash, micro-silica, 
superplasticizer, coarse aggregate, water, and the target's curing time as input and compressive 
strength. The results showed that both models have the capability of delivering a precise 
compressive strength prediction. The best R2 value for the AORBF is 0.9706 in the test phase, and 
the best obtained R2 for the ALRBF model is 0.9669, which is achieved in the same phase. The 
results conclude that the AORBF model can be preferred as an applicable model for compressive 
strength prediction. 
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1. Introduction 
Concrete is the foundation for structures and has a 

large appliance in construction industries. Different mix 

designs choosing appropriate materials are introduced for 

concrete, considering functionality, toughness, eco-saving, 

weight, and workability. Construction properties of 

materials, especially the unusual cohesive material, depend 

on various factors like homogeneity of their segments, 

naturally different properties of diverse components, or 

possible contradictory effects of defined materials on the 

performance of the concrete [1–3] Several cohesive 
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admixtures such as micro-silica, fly ah, nano-silica, and 

metakaolin is the most applied artificial admixtures for 

different purposes [4,5]. 

Fly ash is identical to usual Portland cement in size 

and shape and diminishes the percentage of water in the 

concrete mixtures. The appropriate mix of fly ash and 

superplasticizers in the concrete mixtures leads to 

enhancement in concrete properties, namely durability, 

strength properties, workability, permeability, and 

financial cost. The common way of applying fly ash is 

combining a proper percent of flu ash with the binder 
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material of the concrete to reach an environmentally 

friendly, eco-saving mix design. The decline of air pollution 

through decreasing the co2 emission of concrete admixed 

with fly ash is the environmental aspect. Also, concretes 

admixed with fly ash results a raise in compressive strength 

of concrete [6–8]. The common range of fly ash substitution 

percentage with the cohesive material of the concrete is 

20% to 50%. Also, if the first day strength of concrete is 

negligible, the percentage of fly ash replacement can 

improve as much as 60% [9,10]. 

The size of the silica makes it possible to use it not only 

as filler but also as pozzolan in the concrete mixture [11]. 

Despite the enhancement of the short-term properties of 

concrete, such as compressive strength, rising the 

percentage of micro-silica percentage causes a reduction in 

the workability of the admixed concrete [12]. The 

pozzolanic feature feedback and the micro-silica particle 

size improve the concrete properties [13–18]. A common 

way to obtain less porosity in the concrete mixture is to use 

micro-silica with an appropriate percentage of 

superplasticizer where it helps increase the compressive 

strength of the concrete [19–21]. In an investigation, the 

effect of admixing micro-silica on self-consolidating 

concrete in the sulfuric acid medium was studied which the 

cohesive cement was replaced by micro-silica about 9%. 

The study results declared that adding micro-silica has a 

considerable effect on the compressive strength of concrete 

[22,23]. 

Experimental construction of different samples of 

concrete with various admixtures to estimate their effects 

on the compressive strength of samples consumes time, 

finance, and labor. Computerized methods could help 

decrease the compressive strength estimation cost for 

different mixture designs of concretes [24,25]. Dao et al. 

developed ANN and ANFIS based prediction models to 

estimate the prediction of compressive strength. They 

employed 210 samples to put forward the precise 

estimation of geopolymer concrete compressive strength 

[27]. In another study, Ilker and Mustafa provided a 

prediction model to determine compressive strength. For 

this aim, they used 52 different concrete mixtures with fly 

ash, which ended in 180 samples[28]. Ali et al., in their 

study, computed the mechanical features of concrete 

containing compressive strength, tensile strength, and 

flexural strength for roller compacted concrete pavement. 

They applied classification-based regression models such 

as random forest and M5 prime models to implement the 

prediction of mentioned properties [29]. Saridemir also 

used a multi-layer neural network to predict concrete's 

compressive strength, including micro-silica. He employed 

195 samples with 33 various mixture designs. This 

feedforward multi-layer network provided a robust 

prediction of compressive strength[30]. Pazuki et al. the 

compressive strength was determined using an RBFNN 

neural network. They supplied 327 SCC samples, including 

CFFA, to generate predictive models. [31].
Table 1. descriptive analysis results of parameter features 

Phase Variables Abbr 
Description of Variables 

Min Max Ave St. dev 

Input  

Binder (kg) B 394 500 418.381 40.017 

Fly ash to Binder ratio FA/B 0 0.55 0.2411 0.1482 

Micro-silica to binder ratio MS/B 0 0.1099 0.0543 0.0452 

Superplasticizer to binder ratio (%) SP/B 0 2.6 1.034 0.6226 

Coarse aggregates to binder ratio CA/B 2.172 2.906 2.736 0.2789 

Coarse aggregate to total aggregate ratio CA/TA 0.6 0.6787 0.6283 0.0204 

Water to binder ratio W/B 0.3 0.5 0.4 0.0816 

Curing time (days) CT 28 180 68.571 49.836 

Target  Compressive strength (MPa) CS 24 107.8 64.032 15.309 

 

The CS is one of the concrete’s main features, which 

has a significant effect on the strength of concrete 

membranes. The researcher develops many artificial-based 

methods to facilitate the prediction of compressive in terms 

of time and financial cost. On the other hand, various 

supplementary are applied to enhance the compressive 

strength. Fly ash and micro-silica are supplementary 

materials that increase compressive strength and 

durability. Employing different parentage of these by-

product materials in substitution of cement in concrete 

helps produce high-performance concrete (HPC). 

The present study develops a precise prediction model 

based on a radial base function neural network (RBFN). In 

the process of predicting the compressive strength, a 

different mixture of concrete containing fly ash and micro-

silica combined with various percent of superplasticizer 

were considered to figure out the effects of mentioned 

admixtures in the compressive strength of HPC concrete. 
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The method's accuracy is enhanced by using two 

metaheuristic optimization algorithms (arithmetic 

optimization algorithm and antlion optimization 

algorithm) coupled with RBFN, AORBFN, and ALRBFN. A 

dataset containing B (binder) (kg/m3), FA (fly ash) (kg/m3), 

MS (micro-silica) (kg/m3), CA (coarse aggregate) (kg/m3), 

TA (total aggregate) (kg/m3), W (water) (kg/m3), SP 

(superplasticizer) (kg/m3), CT (curing time) (days), and CS 

(compressive strength) (Mpa) With different mixtures 

design are applied to implement hybrid proposed models. 

Moreover, statistical evaluators such as R2, RMSE, NMSE, 

VAF, and MDAPE are utilized to maintain the robustness of 

two hybrid models and compare models.

 

 

Fig. 1. The scatter matrix plot and distribution plot of impressive input and output compressive strength 

 

2. Methodology  
2.1. Materials  

A collection of data three sets of concrete mix designs 

divided by water to binder ratio of 0.3,0.4, and 0.5. The 

binder material is ASTM Type 1 Portland cement, fly ash is 

a low calcium type conforming to ASTM Class F, and micro-

silica is commercially available. The present collection of 

the dataset is driven from the literature [32]. Binder, micro-

silica to binder ratio, fly ash to binder ratio, coarse 

aggregate to total aggregate ratio, coarse aggregate to 

binder ratio, high-rate water reducing agent to binder ratio, 

water to binder ratio, curing time (days) and compression 

strength. Various mixed designs of HPC concrete including 

micro-silica and fly ash are used, taking into account the 

proportion of high-rate water reducing agents. Fig.1 

displays the scatter plot of fly ash, micro-silica, and 

superplasticizer in proportion to compressive strength. 

Moreover, the distribution of the three abovementioned 

admixtures is depicted in Fig.1. Also, an illustration of input 

variables attributes is listed in Table.1. Fig.1 provides the 
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histogram of input and target variable of model and their 

distribution according to normal distribution. Also, the 

correlation between the inputs and target is depicted as 

color nodes. 

 
2.2. Radial basis function (RBF) 

Radial basis function (RBF) neural networks are 

classified as feedforward models trained by supervised 

learning algorithms [33]. This neural network containing 

three main layers: an input, a hidden, and an output. In the 

input layer, the neurons’ number is set equal to the number 

of inputs, and those nodes do not calculate [34]. The hidden 

layer node function is the Radial Basis Function (RBF), 

which performs non-linear the input layer’s mapping. The 

main action of the RBF is to compute the apace of an input 

variable with a midpoint that depends on the symmetry 

property. 

In the output layer, a non-linear projection of the 

hidden layer's input parameters integrates the hidden 

layer's output into the output layer by linear regression. 

Number of radial basis functions are used like sigmoid, 

Gaussian, barely poly-secondary and inverse poly-

secondary. The most commonly used radial basis function 

is a Gaussian function with central diffusivity and 

features.[35]. 

The first RBFN process calculated the distance 

between the input vector and the center point of each node 

in the hidden layer. The next step is to use the RBF function 

to determine the output of each node. 

𝐷𝑖 = ‖𝑋 − 𝐶𝑖‖ (1) 

𝑂𝑖 = 𝐺𝑎𝑢(𝐷𝑖 . 𝜎𝑖  (2) 

Where 𝐷𝑖  is the radial distance between input vector 

(𝑋) and center point (𝐶𝑖) of node 𝑖 in the hidden layer. 𝑂𝑖  is 

the output of 𝑖 − 𝑡ℎ RBF node determined by Gaussian RBF 

function (𝐺𝑎𝑢). In addition, 𝜎𝑖 shows the 𝑖 − 𝑡ℎ node’s 

width. 

The output layer can be described in the following: 

𝐶𝑆 = 𝑓(𝑋) =∑𝑊𝑖𝑂𝑖

𝑚

𝑖=1

 (3) 

Therefore, 𝑚 defines the largest neuron in the hidden 

layer and 𝑊𝑖 describes the weight between the node in the 

output layer and the node 𝑖 in the hidden layer. The 

structure of the RBF is shown in Figure  

Determining the rate of propagation and the hidden 

layer’s number neurons in the structure of the RBF model 

is very important. In this study, determine both parameters 

through the presenting new metaheuristic method. 

 
2.3. Arithmetic optimization algorithm (AOA) 

AOA is a candidate-based algorithm with the 

conception of algebra that uses arithmetic operators to find 

and update new positions in the population without 

calculating results [35].Arithmetic is a major part of 

modern mathematics and one of the foundations of number 

theory. The algorithm process begins with the initialization 

of randomly generated solution candidates. 

𝐶 = [

𝑐1,1 ⋯ 𝑐1,𝑗
⋮ ⋱ ⋮
𝑐𝑁,1 ⋯ 𝑐𝑁,𝑗

] (4) 

The algorithm includes two main sections: search and 

utilization. After developing the first candidate, need to 

define an exploration space for the search or utilization and 

implement it utilizing the Mathematical Optimizer 

Accelerator Function (MOA). 

𝑀𝑂𝐴 = 𝑀𝑖𝑛 + 𝑖𝑡𝑒𝑟 × (
𝑀𝑎𝑥 − 𝑀𝑖𝑛

𝑀𝑎𝑥𝑖𝑡𝑒𝑟
) (5) 

Here, the minimum and maximum values for the MOA 

describe with 𝑀𝑖𝑛 and 𝑀𝑎𝑥 . 𝑖𝑡𝑒𝑟 indicates the current 

repetition and 𝑀𝑎𝑥𝑖𝑡𝑒𝑟  shows the maximum number of 

iterations. 

The search operation performs on highly spread values 

and applies arithmetic multiplication (M) and division (D) 

operators to the search operation. M and D are highly 

volatile and do not help achieve the goal, though using the 

arithmetic operator subtraction (S). If  𝑟1 > 𝑀𝑂𝐴 the search 

step of the algorithm is in progress. The location of the 

search phase is updated employing Eq. 6 which utilizes the 

M and D operators. 

𝑐(𝑖𝑡𝑒𝑟 + 1)𝑖,𝑗

=

{
 
 

 
 𝑏𝑒𝑠𝑡(𝑐𝑗) ÷ (𝑀𝑂𝑃 + 𝜀) × ((𝑢𝑏 − 𝑙𝑏) × µ + 𝑙𝑏 )   

    𝑟2 > 0.5    

𝑏𝑒𝑠𝑡(𝑐𝑗) ÷ (𝑀𝑂𝑃) × ((𝑢𝑏 − 𝑙𝑏) × µ + 𝑙𝑏 )   

          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 
(6) 

Here, 𝑏𝑒𝑠𝑡(𝑐𝑗)  shows the global best location, 

𝑙𝑏 𝑎𝑛𝑑 𝑢𝑏 are the lower and upper bound of the exploration 

space. 𝜀 indicates little value, and µ sets the control 

parameters for the exploration method, which is set to 

0.499 in this study. MOP represented as a mathematical 

optimization possibility and computed in the following: 

𝑀𝑂𝑃(𝑖𝑡𝑒𝑟) = 1 −
𝑖𝑡𝑒𝑟

1
𝛼⁄

𝑀𝑎𝑥𝑖𝑡𝑒𝑟
1
𝛼⁄

 (7) 

In the above equation, parameter 𝛼 shows the 

sensitivity parameter for accuracy during iteration and is 

equal to 5. 

Moreover, if 𝑟1 < 𝑀𝑂𝐴 the abuse phase occurs. In this 

step, the arithmetic operators S and A are used to the deep 
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dense domain search. This depth-first exploration is 

modeled in the following: 
𝑐(𝑖𝑡𝑒𝑟 + 1)𝑖,𝑗

=

{
 
 

 
 𝑏𝑒𝑠𝑡(𝑐𝑗) − (𝑀𝑂𝑃) × ((𝑢𝑏 − 𝑙𝑏) × µ + 𝑙𝑏 )   

    𝑟3 > 0.5    

𝑏𝑒𝑠𝑡(𝑐𝑗) + (𝑀𝑂𝑃) × ((𝑢𝑏 − 𝑙𝑏) × µ + 𝑙𝑏 ) 

     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 
(8) 

 

Fig. 2. schematic flowchart of hybrid radial base neural network 

 
2.4. Antlion optimization algorithm (ALO) 

The antlion optimization algorithm is also a 

population-based optimization algorithm built on the 

demeanor of the antlion in its life cycle [35]. The stop 

criterion for this algorithm is the repetition’s number, 

which finds the best result for the entire iteration. This 

algorithm’s main part is to develop first candidates for 

antlion and ants. The method by which antlion hunts ants 

and updates the positions of ants and antlion can be 

summarized in the following: 

o Prey’s random walk 

o Create a trap 

o Catch the prey and press it against the antlion (AL)  

o Elite AL selection 

Cumulative totals are employed to describe the 

location of bred ants in the following: 

𝑋(𝑡) = [0, 𝐶𝑠𝑢𝑚(2𝑟(𝑡1)) − 1,… , 𝐶𝑠𝑢𝑚(2𝑟(𝑡𝑛)) − 1]  (9) 

𝑟 (𝑡) = {
1, 𝑟𝑎𝑛𝑑(0, 1) > 0.5

0, 𝑟𝑎𝑛𝑑(0, 1) ≤ 0.5 
} (10) 

The normalization process is utilized in each 

repetition. 

𝑋𝑖
𝑡 =

(𝑋𝑖
𝑡 − 𝑎𝑖). (𝑑𝑖

𝑡 − 𝑐𝑖
𝑡)

𝑏𝑖 − 𝑎𝑖
+ 𝑐𝑖

𝑡
 (11) 
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𝑑𝑖
𝑡 the presented variable’s maximum  

𝑐𝑖
𝑡 the presented variable minimum  

𝑏𝑖 random walk in the i^th variable’ maximum  

𝑎𝑖 random walk in the i^th variable’ minimum  

The Prey’s Random Walk is involved by the AL holes 

shown as follows. 

𝑋(𝑡) = [0, 𝐶𝑠𝑢𝑚(2𝑟(𝑡1)) − 1,… , 𝐶𝑠𝑢𝑚(2𝑟(𝑡𝑛)) − 1]  (12) 

𝑋(𝑡) = [0, 𝐶𝑠𝑢𝑚(2𝑟(𝑡1)) − 1,… , 𝐶𝑠𝑢𝑚(2𝑟(𝑡𝑛)) − 1]  (13) 

𝐴𝑛𝑡𝑙𝑖𝑜𝑛𝑗
𝑡  the 𝑗𝑡ℎ AL’s position  

𝑑𝑡 vectors including the variable maximum  

𝑐𝑡 
vectors including the variables 
minimum 

 

Prey execution donates to AL's performance because 

AL is supposed to catch prey. Thus, can apply Roulette 

Wheel Selection (RWS). Based on this concept, the prey 

with the highest fitness value is most likely to catch a good 

prey. By equations 14 and 15, the preys’ behavior slipping 

into a trap is mathematically modeled. 

𝑐𝑡 =
𝑐𝑡

𝐼
 (14) 

𝑑𝑡 =
𝑑𝑡

𝐼
 (15) 

The parameter 𝐼 of the equation for the ratio depended 

on the maximum and current repetition. Trap searches 

reduce the area and help converge on the optimal solution. 

According to the prey and AL’s fitness values, the next step 

is to select the elite antlion. 

𝑓(𝐴𝑛𝑡𝑖
𝑡) < 𝑓(𝐴𝑛𝑡𝑙𝑖𝑜𝑛𝑗

𝑡) → 𝐴𝑛𝑡𝑙𝑖𝑜𝑛𝑗
𝑡 = 𝐴𝑛𝑡𝑖

𝑡
 (16) 

𝑅𝐴
𝑡  determined the prey’s random walk around the 

antlion and 𝑅𝐸
𝑡  is indicates a prey’s random walk around the 

elite antlion. The location of the ant considering the values 

of 𝑅𝐴
𝑡  and 𝑅𝐸

𝑡  is defined below: 

𝐴𝑛𝑡𝑖
𝑡 =

𝑅𝐴
𝑡 + 𝑅𝐸

𝑡

2
 (17) 

 
2.5. Statistical indicators 

Statistical evaluators are expected to find the 

robustness of the both new hybrid models (AORBFN and 

ALRBFN) and provide a comprehensive comparison of 

models. 

o Coefficient of determination (R2): 

𝑅2 = (
∑ (𝑡𝑛 − 𝑡̅)(𝑝𝑛 − 𝑝̅)
𝑁
𝑛=1

√[∑ (𝑡𝑛 − 𝑝̅)
2𝑁

𝑛=1 ][∑ (𝑝𝑛 − 𝑝̅)
2𝑁

𝑛=1 ]
)

2

 

 

(18) 

o Root mean squared error (RMSE): 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑡𝑛 − 𝑝𝑛)

2

𝑁

𝑛=1

 (19) 

o Normalized mean squared error (NMSE): 

𝑁𝑀𝑆𝐸 =
1

𝑁
∑

(𝑡𝑛 − 𝑝𝑛)
2

𝑡𝑛 ∗ 𝑝𝑛

𝑁

𝑛=1

 (20) 

o Median of absolute percentage error: 

𝑀𝐷𝐴𝑃𝐸 = 𝑚𝑒𝑑𝑖𝑎𝑛 (‖
𝑡𝑛 − 𝑝𝑛
𝑡𝑛

‖ × 100%) (21) 

o Variance account factor 

𝑉𝐴𝐹 = (1 −
𝑣𝑎𝑟(𝑡𝑛 − 𝑝𝑛)

𝑣𝑎𝑟(𝑡𝑛)
) ∗ 100 (22) 

Here 𝑝𝑛 and 𝑡𝑛 are predicted and measured values, 

respectively. 𝑁 shows the samples’ total number. 𝑝̅ and 𝑡,̅ 

describe the mean value of predicted and measured 

parameters, respectively.

Table 2. Results evaluation of two hybrid proposed models based on statistical metrics. 

Statistical 

Metrics 

Prediction models 

AORBF ALRBF 

Train Test Train Test 

R2 0.9686 0.9706 0.9559 0.9669 

Rank  3 4 1 2 

RMSE (Mpa) 2.5886 2.9010 3.0714 3.1044 

Rank 4 3 2 1 

NMSE 6.6437 8.2991   9.4805 9.2445 
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Rank 4 3 1 2 

MDAPE (Mpa)   2.8726 2.9294 3.7124 3.8439 

Rank 4 3 2 1 

VAF 96.7121 97.0153 95.3829 96.5500 

Rank 3 4 1 2 

Total rank  18 17 7 8 

 

3. Results and discussions 
The high-volume consumption of concrete in 

construction industries, the cost of materials, and the 

environmental effects of producing concrete provoke 

researchers and manufacturers to pay attention to a novel 

mixture of high-performance concrete. The important 

constraints in new are to minimize the usage of materials 

such as cement, diminish the emission of carbon dioxide, 

and decrease the financial cost of concrete. A well-known 

way to produce HPC concrete is by applying by-product 

admixtures to the mix design of HPC concrete. Fly ash and 

micro-silica recently are in the attention zone of 

researchers and industrial concrete manufacturers. The 

critical issue in using these supplementary materials is to 

figure out their impacts on the concrete mechanical 

properties, especially the CS. 

In this study, a precise collection of various mix 

designs is employed to evaluate the effects of fly ash and 

micro-silica on CS. Different mix designs of fly ash and 

micro-silica coupled with superplasticizer are considered 

for this aim. As mentioned, considering the financial, 

environmental, laboring, and time cost of determining the 

compressive strength by the experimental method, forces 

to implement the estimation of compressive strength by the 

artificial neural network. Two tuned models based on 

RBFN were developed to accomplish the prediction process 

in the present study. The RBFN models are tuned by 

arithmetic and antlion optimization algorithms to build 

AORBFN and ALRBFN, respectively. The provided dataset 

contains binder (B (kg)) binder, micro-silica/binder ratio 

(MS/B), fly ash/binder ratio (FA/B), coarse aggregate/total 

aggregate ratio (CA/TA), coarse aggregate/binder ratio 

(CA/B), superplasticizer/binder (SP/B (%)), water/binder 

(W/B), and curing time (CT (days)) as input parameters 

and compressive strength (CS) as target values employed. 

Also, the dataset was divided to the training and testing 

phases by the proportion of 70% and 30%. The dataset is 

randpermed using normal distribution function then the 

mentioned ratios of input generate to eliminate the 

dimension of input data. First 70 % of data was applied to 

debug the training phase, then the best trained network was 

validated in the testing phase by the rest 30% of the data. 

Several statistical evaluators such as R2, RMSE, NMSE, 

MDAPE, and VAF preferred to figure out the best 

developed hybrid model in the training phase and evaluate 

the selected model's validation in the testing phase. 

The robustness of the model is also validated 

considering precise work in literature performed by Yin et 

al. [38], which utilized the same data set to promote their 

prediction model of compressive strength. Evaluating the 

RMSE index, the RMSE’s best value for the model 

developed by Yin et al. is 4.8756, whereas the RMSE’s worst 

value for present work is about 3.1044. as it is clear, the 

present work provides a robust model with acceptable 

output results.
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(a)  (b)  

  

(c)  (d)  

Fig 3. The correlation plot and distribution plot of hybrid proposed models: a) AORBF scatter plot    b) AORBF histogram     c) 

ALRBF scatter plot     d) ALRBF histogram 

 

As cleared above, the AORBFN model and the 

ALRBFN model were utilized for the training and test 

phase, and the output of these novel hybrid models was 

evaluated through the abovementioned statistical indices. 

Table.2 present the output results of the two models in 

detail. As shown in Table.2, the best RMSE value is taken 

by the AORBF model in the training phase, and the second 

stage of RMESE is for the same model in the testing step. 

The ALRBFN model also performed an acceptable 

prediction of compressive strength considering RMSE. 

Another index to evaluate the performance of the models is 

R2, where the values of this index for the training and test 

phase of both the AORBFN and ALRBFN model are 

reported as 0.9689, 0.9706, 0.9559, and 0.9669, 

respectively. The best value for this index is for AORBFN in 

the test phase, and the worst is for ALRBFN in the training 

phase. MDAPE is also showed the same trend as RMASE, 

with the best value of 2.8726 for AORBFN in the training 

phase and the worst value of 3.8439 for the ALRBFN model 

in the test phase. The NMSE index shows different feedback 

of the model. the first stage considering NMSE is for 

AORBF in the training phase with the value of 6.6437 and 

the last stage is for ALRBFN in the same phase with the 

value of 9.4805. moreover, the VAF index showed a 
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reaction trend same as R2 with the values of 96.7121, 

97.0153, 95.3829, and 96.55 for the training and test 

section of AORBFN and ALRBFN, respectively. 

 

(a)  

 

(b)  

Fig 4. the time series distribution of AORBF and ALRBF models: a) 

AORBF    b) ALRBF  

The employed ranking system also demonstrates that 

the AORBFN model in the training phase outperforms the 

best predicting model. The second, third, and fourth stages 

belong to AORBFN in the test phase, ALRBFN in the test 

phase, and ALRBFN in the training phase. 

Fig.3 provides the distribution of the hybrid models for 

the training and test phase. Also, the correlation plots of 

proposed models are depicted in Fig.3. as Figs.3(a-d) 

shows, both models in both phases provide an acceptable 

correlation between the predicted and measured values of 

compressive strength. Considering the fitted line for the 

training and test data, it is evident that the best correlation 

is obtainable from the AORBFN model. Meanwhile, the 

distribution diagrams indicate the partially identical 

performance of the models. 

A comprehensive understanding of the model 

potential in predicting compressive strength values is 

achievable from time series plots drawn for AORBFN and 

ALRBFN models in Fig.4. as Figs.4(a-b) AORBF model 

supplies an acceptable behavior for predicting compressive 

strength in both sections. It is evident that comparing the 

AORBF and ALRBF models, the AORBF model predicted 

values best matches the measured values, and the lowest 

deviation of compressive strength values is obtained for the 

AORNFN model. 

 

4. Conclusion  
In the present study, the effect of fly ash and micro-

silica on the compressive strength of HPC concrete was 

investigated. For this aim, two hybrid models based on 

RBFN were developed and tuned by ALO and AOA 

optimization algorithms to reach the optimal accuracy of 

the provided network in predicting compressive strength 

values. It is demonstrated that prediction of compressive 

strength based on artificial intelligence method delivers a 

beneficial model in terms of environmental, financial, and 

time cost. The following outsets of this work can be drawn 

as: 

o Two novel hybrid models named AORBFN and 

ALRBFN were developed. The AORBFN model 

outperformed best between developed models. 

o In both models, the optimum values of the spread 

rate and the maximum number of RBF neurons in 

the hidden layer are set by the coupled 

optimization algorithm. 

o The training phase of the AORBFN model 

performed best in predicting compressive strength. 

o Both models demonstrated their precise capability 

of predicting the compressive strength of HPC 

concrete, and the AORBF model can be introduced 

as the most workable model. 
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