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Highlights 

 

➢ A dynamic multi-objective TEP was performed based on the DB DR program and price-dependent bids. 
➢ The TEP problem is a dynamic optimization problem with mixed and integer variables. 
➢ The proposed algorithm was implemented on an IEEE 24-bus gird to display its benefits. 
➢ Investment, congestion and load cut-off costs were selected as the objectives. 
➢ Using DR reduced the investment cost and load cut-off by lowering the satisfaction level of investment cost.  

 
 

Article Info  Abstract 

With the daily rise in power demand, the penetration of dispersed generations (DG) such as wind 
turbines, the operation of series reactive compensator devices and the progress of reconfiguration 
in power system management, there is a dire need for optimally planning the expansion of 
transmission network lines. Transmission network expansion planning (TEP) is a major part of 
power system expansion planning that determines the type, location and time of installing new lines 
for the adequacy of power supply. Therefore, the TEP problem is a dynamic optimization problem 
with mixed and integer variables. In traditional systems, consumption management programs were 
used to overcome some problems of the power system. Meanwhile, demand response (DR) 
programs were discussed as a part of these programs. However, after the reconfiguration of power 
systems, these programs were gradually discarded due to incompatibilities with the nature of the 
market. Soon, due to the problems such as price instability, re-implementation of consumption 
management programs once again gained momentum. This time, these programs were altered to 
be compatible with the reconfigured power system management structure. This is widely accepted 
that increasing the presence and participation of consumers in DR programs in the electricity 
market will benefit not only individual consumers, but also the whole consumer community. In this 
paper, a dynamic multi-objective TEP is performed under reliability constraints in the market 
setting based on demand sales programs and price-dependent bids in the day-ahead market. The 
proposed algorithm was implemented on an IEEE 24-bus gird to display its benefits, including 
reduction of investment costs, mitigation of congestion and promotion of reliability. 
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Nomenclature 

Parameters 𝑺𝒊𝒋
𝒎𝒂𝒙 Maximum transferable power from the line between 

buses i and j 
G Set of all generators 𝑃𝑑𝐶𝑅

𝑖,𝑚𝑎𝑥 Maximum DB participating part in the ith bus 
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𝐺𝑛: Set of generators connected to bus n 𝑝𝑔
𝑖,𝑚𝑎𝑥 Maximum active power generated by the ith generator 

𝐷 Set of all loads 𝑃𝑑
𝑖,𝑚𝑎𝑥 Maximum price taker part of the load in the ith bus 

𝐷𝑛 Set of loads connected to bus n 𝑝𝑔
𝑖,𝑚𝑖𝑛 Minimum active power generated by the ith generator 

𝑁𝑏 Set of system buses 𝑃𝑑
𝑖  Minimum reactive power generated by the ith 

generator 
ѱ Set of n-1 occurrences 𝑉𝑂𝐿𝐿𝑑𝐶𝐻

𝑖  Price of the load proposing cut-off in the ith bus 

Variables 𝑉𝑂𝐿𝐿𝑑𝑆𝐻
𝑖  Price of the cut-off load in the ith bus 

𝑝𝑔
𝑖  Active power generated by the ith generator c Price Factor 

𝑑 Bank discount rate 𝑎𝑔, 𝑏𝑔, 𝑐𝑔 Price function coefficients of the generators 

𝐺𝑖𝑗 Conductance of Line ij 𝐶𝑔 Producers’ cost function 

𝐵𝑑 Consumers’ profit function 𝛼𝐶𝑅
𝑖  Ratio of maximum load participating in DB to the price 

taker load of the ith bus 

𝐴𝑖 , 𝐵𝑖 Coefficients of the load curve participating in the 
DR program in the ith bus 

𝑃𝑑𝐷𝑅
𝑖  Responsive part of the load in the ith bus 

𝑝𝑑𝑆𝐻
𝑖,𝑀𝑁 Cut-off part of the load in the ith bus when the line 

between m and n is cut-off 
𝑞𝑔
𝑖  Reactive power generated by the ith generator 

𝑃𝑑𝑃𝑇
𝑖  Price taker part of the load in the ith bus 𝑆𝑊 Social welfare 

𝑝𝑑𝑆𝐻
𝑖  Cut-off part of the load in the ith bus 𝜆𝐿,𝑖 Section associated with losses 

𝑄𝐷 Demand Reactive power 𝜆𝐶,𝑖 Section associated with congestion 

𝑌𝑖𝑗 = 𝐺𝑖𝑗 Elements i and j in the system admittance matrix 𝛼𝐷𝑅
𝑖  Susceptance of Line ij 

𝑄𝐺 Generator Reactive Power 𝑆𝑊𝑊𝑂𝐶
𝑁𝑦

 Social welfare in year NY without transmission 
constraints 

𝑉𝑖
𝑚𝑖𝑛 Lower limit of voltage at bus i 𝑆𝑊𝑊𝐶

𝑁𝑦
 Social welfare in year NY with transmission 

constraints 

𝑞𝑔
𝑖,𝑚𝑎𝑥 Maximum reactive power generated by the ith 

generator 
𝐿𝐶𝐶0 Total cost of cut-off loads in normal operating 

conditions 

𝑆𝑗𝑖
𝑚𝑎𝑥  Maximum mixed power limit 𝐿𝐶𝐶1: Total cost of cut-off loads in single-event operating 

conditions 

𝑃𝑑𝐷𝑅
𝑖,𝑚𝑎𝑥 Maximum responsive part of the load in the ith 

bus 
𝑉𝑖
𝑚𝑎𝑥 Upper limit of voltage at bus i 

 

1. Introduction 
Nowadays, with the growth in energy consumption, 

expansion planning has become critical and indispensable 

to supplying resources. Meanwhile, power system planning 

is a highly influential affair in the operation and repair of 

future power systems. In the past, power system expansion 

aimed to minimize investment of new equipment for power 

supply at an optimal level of reliability while meeting the 

operation constraints [1]. The formation of the electricity 

market added new objectives to the generation and 

transmission network expansion planning problem and 

converted it into a multi-objective, complex and large-scale 

problem. Traditional mathematical solution tools were no 

longer satisfying the needs of this new environment and 

had to be revised or changed, which led to the emergence of 

metaheuristic methods such as genetic algorithm (GA) or 

particle swarm optimization (PSO) algorithm [2]. These 

methods do not have the disadvantages of mathematical 

methods and use several stages to find final solutions, 

which reduces the risk of entrapment in local minima. Their 

advantages such as artificial intelligence, elitism and 

competitiveness ensure finding a final optimal solution 

with acceptable approximation to the absolute optimal 

point, albeit by increasing the computational volume [3]. 

Overall, power system planning problems are divided into 

static and dynamic groups. In the static planning, the 

location and capacity of new equipment are determined, 

while in the dynamic one, the installation time is also 

specified. In other words, in the static planning, design 

years are not dependent and are regarded as continuous, 

whereas in the dynamic one, each year is planned based on 

the equipment installed in the last years; planning of one 
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year is not independent of other years [4]. In practice, 

power grid planning is performed dynamically. Although 

this feature complicates and prolongs calculations, it 

greatly helps improve the minimization of costs and 

optimization of the final solution. In regulated power 

systems, transmission network expansion planning (TEP) 

is traditionally discussed as an optimization problem 

aiming to minimize the costs of constructing new lines 

while maintaining reliability, while in the deregulated 

setting, TEP pursues different objectives [5]. The 

considerable effects of the generation and transfer sector on 

the reliability of power systems and its related heavy costs 

in operation and planning have motivated numerous 

studies. 

In [6], an algorithm inspired by bats along with an 

efficient hybrid algorithm in the form of an efficient hybrid 

algorithm for TEP was proposed. This study considered 

network losses in extensive application in an actual large-

scale system. In [7], a robust adaptive formulation was 

proposed which simultaneously displayed annual 

integration, investment decisions in capacity expansion 

lines, construction or cancellation of RES and conventional 

facilities. The dynamic transmission network and RES 

expansion problem was formulated as a three-level robust 

optimization problem. In [8], a TEP problem was dealt with 

to identify when and where new equipment such as 

transmission lines, cables and transformers had to be 

applied to the network.  In [9], a novel framework was 

introduced for long-term generation and TEP in multi-

carrier energy systems. Here, the studied system comprised 

a combined heat and power (CHP) system, a gas furnace, 

an electricity generation unit and transmission lines related 

to natural gas and electric grids. In [10], a framework of 

energy storage system (ESS) expansion planning studies in 

systems was proposed. The main objective was to find the 

optimal location and capacity of the dispersed ESS 

according to the system operator. In [11], the TEP problem 

was considered as a highly complex and mixed linear 

programming problem. The solution was essential for cost-

effectively meeting the power demand. The gray wolf 

optimization (GWO) algorithm, which is a nature-inspired 

metaheuristic algorithm, was used for solving the problem. 

In [12], comprehensive examination of generation 

expansion planning was presented and it was shown that 

integration of demand-side management, ESS and short-

term operational features of electricity power stations could 

markedly promote the flexibility of power systems and 

change energy generation and optimal capacity 

composition. In [13], a novel mathematical method was 

proposed for TEP and installation of battery ESS (BESS). 

An optimal location of small-scale BESS could help transfer 

systems in swarm management and improve power system 

security. BESS can also increase power system reliability in 

probabilistic conditions. The results demonstrated that a 

security and reliability approach to simultaneous TEP and 

optimal location of BESS could be beneficial. In [14], the 

increased penetration of RES units in far-away regions was 

dealt with. Due to fluctuations in RES generation, 

programming had to include operational decisions in the 

programming model. In [15], a risk-based expansion 

planning method was introduced. At the core of this 

method, there was an alternative current-based error 

model that simulated the power system reactions after 

probabilities. This method aimed to present an optimal 

expansion plan that paid attention to the balance between 

expansion costs and systemic failure risks. In [16], the 

generation expansion planning problem was solved by 

minimizing the total investment, operation, maintenance 

and unsupplied energy costs by using a modified frog 

jumping algorithm. In [17], a multi-objective generation 

expansion planning problem was solved which included 

pollution, operation and investment costs of new 

generators by using linear programming. In [18], the 

transmission expansion problem was solved by considering 

investment costs, reliability and congestion of lines, but 

disregarded the generation expansion planning problem. 

Moreover, this study calculated the mean load cut-off only 

in the case of a single-line outage. In [19], the line 

congestion costs were defined as the product of line 

transferred power by the difference in the local marginal 

prices (LMP) of buses on both ends. The total network 

congestion cost was calculated by summing the costs of 

lines and its reduction was pursued in selecting the optimal 

design. In [20], the congestion cost was defined as the 

difference in costs with and without transmission 

constraints. In [21], DR programs were modeled as virtual 

and dispersed resources for long-term distribution system 

expansion planning. In [22], the total costs of investment, 

losses and repair of transmission lines were minimized by 

considering the N-1 criterion for a single-line outage and 

solved it by using the honey bee evolutionary algorithm. In 

[23], the simultaneous expansion of generation and 

transmission capacities was solved to minimize the total 

costs of generators’ fuel, fuel transfer, generator and line 

installation. In [24], a bi-level method was discussed. The 

first level dealt with the problem of transmission line 

expansion by the line operator. At the second level, the 

market revenue resulting from market clearing was solved 

based on game theory. 

In Ref [25], using the states cooperation model of 

United State, a novel model is proposed for generation of 

renewable energy have been proposed. In [26], a novel two-
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level optimization model is proposed to achieve optimal 

energy value in hybrid energy systems contains renewable 

energy. In this proposed model the common benefits are 

considered as fitness function which is minimized the 

operation cost beside benefit maximizing. In [27], a risk-

based model for distribution network planning considering 

demand response and bilateral contracts is proposed. A 

novel improved SOCP model to corporation between 

distribution and transmission network is proposed in [28]. 

In [29], an analyzed model for 2030 and 2050 years are 

proposed and the role of energy storage is illustrated in this 

work. Also, a novel technique based on Joint planning 

Expansion planning and placement of energy storage 

devices have been considered. 

Accordingly, the current study proposes an overall 

framework for multi-objective dynamic TEP. The objectives 

are to minimize costs of investment and congestion while 

meeting system adequacy. Programming is performed in 

the market setting by foreseeing DR and using the AC 

model. To find the optimal Pareto region, a novel method 

based on the salp algorithm is proposed and the final 

decision is made by using the fuzzy method. It is assumed 

that transmission networks are managed and expanded by 

a regulatory institution (transmission provider) to 

maximize social welfare under reliability constraints. TEP 

is based on peak load because the transmission system 

must be able to operate correctly at the peak load. Problems 

such as congestion and mandatory load cut-off (due to 

shortage in generation or transmission constraints) often 

occur in the peak load. Moreover, DR is activated in peak 

hours when the market price rises. The market modeling, 

programming objectives, multi-objective optimization, the 

proposed algorithm and the results are presented below. 

In the next section, the mathematical modelling of the 

study model is defined. In section 3, the objective function 

will be presented. The proposed improved optimization 

model can be achieved in section 4. Fuzzy modelling and 

simulation results are presented in sections 5 and 6, 

respectively and Finally conclusion of the proposed strategy 

is described in 7. 

 
2. Market modeling 

In deregulated power systems, the independent 

system operator (ISO) divided generators’ generation such 

that the load is supplied with minimum costs while 

maintaining security and quality. In this section, the 

market-clearing mechanism is explained. This mechanism 

receives the bids of both demand and supply sides and 

includes the proposed constraints. This day-ahead market 

involves mixed bids and aims to maximize social welfare. 

Therefore, the operator must perform the optimization to 

determine the optimal generation and consumption 

programs, and obtain the market-clearing price. It is 

assumed that a limiting generation unit is used for clearing, 

so that the generators are encouraged to bid their actual 

costs. 

 
2.1.  Load model while considering DR 

The accurate modeling of consumers’ response to 

electrical energy price is essential. Figure 2 shows the 

demand and supply curves utilized in this study [31]. A part 

of demand (𝑃𝑑𝐷𝑅
𝑚𝑎𝑥) up to a certain value of lost load (𝑉𝑂𝐿𝐿𝐶𝑅) 

is assumed to be price-responsive. In other words, this part 

participates in the market by making price-dependent bids. 

The other part (𝑃𝑑𝐶𝑅
𝑚𝑎𝑥) participates in the DB and directly 

proposes the cut-off bid at price 𝑉𝑂𝐿𝐿𝐶𝑅 to the market. Not 

all consumers have the ability or motivation to regulate 

their demands as a function of price; therefore, a part of this 

demand will remain. This part (𝑃𝑑𝑃𝑇
𝑚𝑎𝑥) is the price taker part 

that must be supplied at any price. Indeed, it is assumed 

that the system operator has a price limit equal to the value 

of lost load (𝑉𝑂𝐿𝐿𝑆𝐻) which is the maximum momentary 

market price. Finally, the last part (𝑃𝑑𝑆𝐻
𝑚𝑎𝑥) cannot be 

supplied by the system, or since the price exceeds(𝑉𝑂𝐿𝐿𝐶𝑅), 

the operator intervenes by cutting off or reducing the fixed 

part of the loads. For any bus i, values of𝑃𝑑𝐷𝑅
𝑖 , 𝑃𝑑𝐶𝑅

𝑖  and 𝑃𝑑𝑆𝐻
𝑖  

are determined in the optimization process conducted by 

ISO and we will have [3]: 

𝑝𝑑
𝑖 = (𝑃𝑑𝑃𝑇

𝑖,𝑚𝑎𝑥 − 𝑃𝑑𝑆𝐻
𝑖 ) + (𝑃𝑑𝐶𝑅

𝑖,𝑚𝑎𝑥 − 𝑃𝑑𝐶𝑅
𝑖 ) + 𝑃𝑑𝐷𝑅

𝑖
 (1) 

2.2. Objective function for modeling the market 

As noted, before, the objective is to maximize social 

welfare, i.e., the difference between the consumers' value 

for the purchased electrical energy and cost of generating 

this energy. The profit function or the consumers’ value 

based on DR programs and cut-off load is [30] 

𝐵𝑑 =∑(

𝑖∈𝐷

𝑃𝑑𝑃𝑇
𝑖,𝑚𝑎𝑥 − 𝑃𝑑𝑆𝐻

𝑖   ) ∗ 𝑉𝑂𝐿𝐿𝑆𝐻
𝑖 + ∑𝑃𝑑𝐷𝑅

𝑖  

𝑖∈𝐷

(𝐴𝑖

+ 0.5𝐵𝑖𝑃𝑑𝐷𝑅
𝑖  ) 

+∑( 𝑃𝑑𝐶𝑅
𝑖,𝑚𝑎𝑥 −

𝑖∈𝐷

𝑃𝑑𝐶𝑅
𝑖 ) ∗ 𝑉𝑂𝐿𝐿𝐶𝑅  

(2) 

The first term is the gross surplus of price-taker 

consumers. The term inside the parentheses in the first 

term shows the supplied price taker load. The second term 

is the price-responsive gross surplus of consumers and the 

third term is the DB-participating gross surplus load that is 

not cut-off. Moreover,  is often expressed as a ratio of 

the price taker load: 

𝑃𝑑𝐶𝑅
𝑖,𝑚𝑎𝑥 = 𝛼𝐶𝑅

𝑖 𝑃𝑑𝑃𝑇
𝑖,𝑚𝑎𝑥

 (3) 

,maxi

dDRp
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𝑃𝑑𝐷𝑅
𝑖,𝑚𝑎𝑥 = 𝛼𝐷𝑅

𝑖 𝑃𝑑𝑃𝑇
𝑖,𝑚𝑎𝑥 (4) 

Coefficients 𝛼𝐶𝑅
𝑖  and 𝛼𝐷𝑅

𝑖  denote the ratio of DR 

participation in each bus per price taker’s load price. In this 

paper, these coefficients are assumed to be 0.07 based on 

the US electricity markets. The generators’ cost function is 

[31]: 

𝐶𝑔 =∑(𝑎𝑔
𝑖 𝑝𝑔

𝑖2 + 𝑏𝑔
𝑖𝑝𝑔

𝑖 + 𝑐𝑔
𝑖 )

𝑖∈𝐺

+∑𝑃𝑑𝐶𝑅
𝑖,

𝑖∈𝐷

𝑉𝑂𝐿𝐿𝑑𝐶𝑅
𝑖  

+∑𝑃𝑑𝑆𝐻
𝑖,

𝑖∈𝐷

𝑉𝑂𝐿𝐿𝑑𝑆𝐻
𝑖

 

(5) 

The first term is the generators’ cost function and the 

second and third terms are the cost paid to cut-off DB and 

mandatory loads. The goal is to maximize social welfare, 

i.e., 

𝑚𝑎𝑥𝑆𝑊 = 𝐵𝑑 − 𝐶𝑔 (6) 

2.2.1. Constraints 

The constraints include [32]: 

∑ 𝑝𝑔
𝑖

𝑖∈𝐺𝑛

− ∑[(

𝑖∈𝐷𝑛

𝑃𝑑𝑃𝑇
𝑖,𝑚𝑎𝑥 − 𝑃𝑑𝑆𝐻

𝑖    ) + ( 𝑃𝑑𝐶𝑅
𝑖,𝑚𝑎𝑥 − 𝑃𝑑𝐶𝑅

𝑖  ) 

+ 𝑃𝑑𝐷𝑅
𝑖 ] 

− ∑ [𝐺𝑖𝑗(𝑣𝑖
2 − 𝑣𝑖𝑣𝑗 𝑐𝑜𝑠(𝛿𝑖𝑗)) −

𝑗∈𝑁𝑏

𝐵𝑖𝑗𝑣𝑖𝑣𝑗𝑠𝑖𝑛(𝛿𝑖𝑗)) = 0  

(7) 

∑ 𝑞𝑔
𝑖

𝑖∈𝐺𝑛

− ∑[(

𝑖∈𝐷𝑛

𝑞𝑑𝑃𝑇
𝑖,𝑚𝑎𝑥 − 𝑞𝑑𝑆𝐻

𝑖    ) + ( 𝑞𝑑𝐶𝑅
𝑖,𝑚𝑎𝑥 − 𝑞𝑑𝐶𝑅

𝑖  ) 

+ 𝑞𝑑𝐷𝑅
𝑖 ] 

− ∑ [𝐵𝑖𝑗(𝑣𝑖
2 − 𝑣𝑖𝑣𝑗 𝑐𝑜𝑠(𝛿𝑖𝑗)) −

𝑗∈𝑁𝑏

𝐺𝑖𝑗𝑣𝑖𝑣𝑗𝑠𝑖𝑛(𝛿𝑖𝑗)) = 0  

(8) 

[𝐺𝑖𝑗(𝑣𝑖
2 − 𝑣𝑖𝑣𝑗 𝑐𝑜𝑠(𝛿𝑖𝑗)) − 𝐵𝑖𝑗𝑣𝑖𝑣𝑗𝑠𝑖𝑛(𝛿𝑖𝑗)]

2 +[-

𝐵𝑖𝑗(𝑣𝑖
2 − 𝑣𝑖𝑣𝑗 𝑐𝑜𝑠(𝛿𝑖𝑗)) − 𝐺𝑖𝑗𝑣𝑖𝑣𝑗𝑠𝑖𝑛(𝛿𝑖𝑗)]

2 ≤ 𝑆𝑖𝑗
𝑚𝑎𝑥2

 
(9) 

0 ≤ 𝑃𝑑𝐷𝑅
𝑖 ≤ 𝑃𝑑𝐷𝑅

𝑖,𝑚𝑎𝑥
 (10) 

0 ≤ 𝑃𝑑𝐶𝑅
𝑖 ≤ 𝑃𝑑𝐶𝑅

𝑖,𝑚𝑎𝑥
 (11) 

0 ≤ 𝑃𝑑𝑆𝐻
𝑖 ≤ 𝑃𝑑𝑆𝐻

𝑖,𝑚𝑎𝑥
 (12) 

𝑞𝑑𝑃𝑇
𝑖 = 𝑡𝑔𝜑𝑖𝑝𝑑𝑃𝑇

𝑖
 (13) 

𝑞𝑑𝐷𝑅
𝑖 = 𝑡𝑔𝜑𝑖𝑝𝑑𝐷𝑅

𝑖
 (14) 

𝑞𝑑𝐶𝑅
𝑖 = 𝑡𝑔𝜑𝑖𝑝𝑑𝐶𝑅

𝑖
 (15) 

𝑞𝑑𝑆𝐻
𝑖 = 𝑡𝑔𝜑𝑖𝑝𝑑𝑆𝐻

𝑖
 (16) 

𝑞𝑔
𝑖,𝑚𝑖𝑛 ≤ 𝑝𝑔

𝑖 ≤ 𝑝𝑔
𝑖,𝑚𝑎𝑥

 (17) 

𝑞𝑔
𝑖,𝑚𝑖𝑛 ≤ 𝑞𝑔

𝑖 ≤ 𝑞𝑔
𝑖,𝑚𝑎𝑥

 (18) 

𝑣𝑚𝑖𝑛 ≤ 𝑣𝑖 ≤ 𝑣
𝑚𝑎𝑥  (19) 

−2𝜋 ≤ 𝛿𝑖 ≤ 2𝜋 (20) 

Equations 7 and 8 show the power balance constraint 

in each bus; Equation 9 denotes the limit of power passing 

each lines; Equations 10-12 demonstrate the maximum 

values of the price-responsive part, DB-participating part 

and demand cut-off. Equations 13-16 demonstrate the fixed 

nature of the load power coefficient, Equations 17 and 18 

show the minimum and maximum generation, and 

Equations 19 and 20 show the limits of bus voltage size and 

angle. 

 

3. Programming objectives 
The main goal of TEP is to provide a competitive, 

equitable and reliable environment for all at the lowest 

costs. Therefore, objectives must be defined such that the 

competition demonstrates the reliability level and 

investment costs. The following objectives were pursued 

here. 

 
3.1. Investment cost 

In both traditional and electricity market settings, a 

design’s economic nature is a priority for its selection. 

Therefore, investment cost must be regarded as an 

economic criterion in expansion planning to minimize 

expansion costs. As the programming is dynamic, the total 

investment cost is calculated by including the capital 

discount rate as: 

𝑖𝑐𝑡 =∑ (𝑖𝑐𝑙𝑢𝑙
𝑡

𝑙=𝛺
) +∑ (𝑖𝑐𝑔𝑢𝑔

𝑡 )
𝑔=𝛺

 (21) 

𝐼𝐶𝑃𝑉 =∑
𝑖𝑐𝑡

(1 + 𝑑)𝑡−1

𝑁𝑦

𝑡=1

 (22) 

where 𝑖𝑐𝑡  is the investment cost in the tth year; 𝑖𝑐𝑔 and 

𝑖𝑐𝑙  are respectively the installation costs of generators and 
transmission line; 𝑢𝑔

𝑡  and ult are binary variables denoting 

the installation status of the generator and lines, 

respectively; if it is 1, it shows the installation of the device 

in year 𝑡 of the design horizon.  is the set of all elements 

which were candidates of installations; ICPV is the total 

investment cost: based on the current value; d is the capital 
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value discount percentage and NY is the number of design 

years. 

 
3.2. Congestion cost 

The main goal of the electricity market is to create a 

competitive and equitable environment for all the players. 

Less line congestion enables producers and consumers to 

have free access to all parts of the market. In other words, a 

sufficient transmission capacity helps increase social 

welfare, improve competition and balance market power. 

Thus, line congestion has been included as an appropriate 

criterion for this purpose in the electricity market. By 

implementing the DC load dispatch by ISO, LMPs are 

determined. The LMP index is calculated as a Lagrangian 

coefficient of the active power balance equation in each bus. 

For a given point of operation, the peak load of the line 

congestion costs is calculated from the following equation: 

𝐶𝐶′ =∑ 𝑓𝑙,𝑚𝑛
𝑡 (𝑙𝑚𝑝𝑚

𝑡 − 𝑙𝑚𝑝𝑛
𝑡 )

𝑙=𝜑
 (23) 

𝐶𝐶𝑝𝑣 =∑
𝑐𝑐𝑡

(1 + 𝑑)𝑡−1

𝑁𝑦

𝑡=1
 (24) 

where 𝑐𝑐𝑡 is the hourly price of line congestion n year 

𝑡; 𝑙𝑚𝑝𝑚
𝑡  is the LMP for bus m in year t and 𝐶𝐶𝑝𝑣 is the total 

cost of line congestion based on the current value. 

 
3.3. Load outage cost 

In emergencies, a good network configuration can help 

prevent load outage. Presenting a reliable network under 

system events is a goal of TEP. This paper adopts the NERC 

definition of security (single-event or N-1 security). The 

total expected load outage costs in the normal conditions 

and events are assumed as the criterion for reliability and 

the third objective: 

𝑚𝑖𝑛𝑓3 = 𝐿𝐶𝐶0 + 𝐿𝐶𝐶1 (25) 

𝐿𝐶𝐶0 = ∑ ∑ 𝑝𝑑𝑆𝐻
𝑖 𝑉𝑂𝐿𝐿𝑑𝑆𝐻

𝑖

𝑖∈𝑁𝑏

5

𝑁𝑦=1

 (26) 

𝐿𝐶𝐶1 = ∑ ∑ ∑ 𝑝𝑑𝑆𝐻
𝑖 𝑉𝑂𝐿𝐿𝑑𝑆𝐻

𝑖

𝑖∈𝑁𝑏𝑚𝑛∈ѱ

5

𝑁𝑦=1

 (27) 

This formulation can be easily changed for mixing the 

event probabilities. Although events can be selected by an 

appropriate method to limit the time of calculations in the 

large-scale transmission planning, in the proposed case 

study, all the events re used. This formulation has two 

advantages: First, the optimization problem will become 

feasible at all times due to the presence of load outage; 

second, defining the reliability criteria as an objective will 

allow the decision-maker to perform a cost-benefit analysis. 

 

4. Metaheuristic algorithm 
Hybrid optimization problems are often expressed 

with ease, but solved with difficulty. There are two 

categories of algorithms for solving hybrid problems: exact 

and approximation. 

The exact algorithm ensures finding the best solution. 

The problem is that these algorithms are not efficient for 

hard problems; the solution time will exponentially rise for 

hard problems; and the exact solution will not be 

satisfactory for most of the NP-hard problems. 

If the optimal solution cannot be found by an exact 

algorithm in practice, we must use approximation 

algorithms. These algorithms, also known as heuristic 

algorithms, look for the proper and near-optimal solutions. 

This method reduces the computational time compared to 

the previous method, but there is no guarantee for 

presenting the best solution. 

Metaheuristic algorithm: 

There are certain disadvantages to heuristic 

algorithms. Heuristic algorithms guarantee either very few 

solutions (i.e., one algorithm cannot be used for other 

problems), or stop in a weak and unreliable local optimum 

due to the existence of improved iteration methods. 

Metaheuristic algorithms have been proposed to resolve 

these problems. This method which was introduced in the 

1980s can be used to solve problems with hard 

optimization. 

Definition of metaheuristic algorithms: 

Metaheuristic algorithms are a set of algorithms 

applied to heuristic algorithms and release them from local 

optima while allowing for the use of heuristic algorithms in 

a large number of problems. We mentioned two problems 

of local optima and limited solutions for heuristic 

algorithms; these two problems are resolved using 

metaheuristic algorithms. 

In a similar definition, metaheuristic is a general 

algorithmic framework that can present solutions specific 

to a new problem with few changes (contrary to heuristic 

algorithms that are unique to a certain problem). 

Some algorithms in this category are inspired by 

nature. Some algorithms have a memory, i.e., they use the 

results obtained when running the algorithm. 

Examples of metaheuristic algorithms include the GA, 

ant colony, bee colony, refrigeration simulation, tabu 

search, salp swarm, etc. 

 
4.1. Multi-objective salt swarm algorithm (MSSA) 
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The MSSA was proposed by Mirjalili et al. based on the 

social behavior of salp. Salps belong to the Salpidae family 

and have a transparent and cylindrical body. Their body 

tissue resembles that of jellyfish and they move similarly. 

Their body pumps water to provide a thrust force forward. 

The following image shows a salp [33]. 

 

Fig 1. A) a salp, B) a group of salps 

In modeling the salp swarm algorithm, their social and 

chain-like behavior is used for better motility by using rapid 

coordinated movement in chasing food. In the 

mathematical modeling of salp chains, the population is 

first divided into two groups of the leader and followers. 

The leader is the salp at the front of the chain, while the 

other salps are the followers. The leader is in charge of 

leading the group, while the followers follow each other. 

Similar to other population-based methods, the salp’s 

position is defined in an n-dimensional search space, in 

which n is the number of variables of a certain problem. 

Therefore, the position of all salps is stored in a 2D matrix, 

known as x. It is also assumed that there is a food source F 

in the search space as the goal of the swarm. The following 

equation is used to update the leader's position: 

𝑥𝑗
𝑖 = {

𝐹𝑗 + 𝑐1 ((𝑢𝑏𝑗 − 𝑙𝑏𝑗)𝑐2 + 𝑙𝑏𝑗)        𝑐3 ≥ 0

𝐹𝑗 − 𝑐1 ((𝑢𝑏𝑗 − 𝑙𝑏𝑗)𝑐2 + 𝑙𝑏𝑗)        𝑐3 ≤ 0
 (28) 

where 𝑥𝑗
𝑖 indicates the position of the first salp (leader) 

in the Jth dimension; Fj is the position of the food source in 

the Jth dimension; ubj shows the upper bound of the jth 

dimension; lbj shows the lower bound of the jth dimension 

and c1, c2 and c3 are random numbers. This equation 

shows that the leader only updates its position compared to 

the food source. The c1 coefficient is the most important 

parameter in the SSA because it balances the discovery and 

use of the definition as follows: 

𝐶1 = 2𝑒−(
4𝑙
𝐿
)2

 (29) 

Here, I is the current iteration and L the maximum 

number of iterations. Parameters c2 and c3 are random 

numbers uniformly generated in the [0,1] interval. They 

show whether the next position in the jth dimension must 

be towards positive or negative infinity and they also 

specify the step size. The position of the followers is 

updated via the following equation (Newton’s law of 

motion): 

𝑥𝑗
𝑖 =

1

2
𝑎𝑡2 + 𝑣0𝑡 (30) 

𝑎 =
𝑣𝑓𝑖𝑛𝑎𝑙

𝑣0
 (31) 

𝑣 =
𝑥 − 𝑥0
𝑡

 (32) 

Where 𝑖 ≥ 2 and 𝑥𝑗
𝑖 indicate the position of the ith 

follower salp in the jth dimension, T is time and V0 is the 

primary velocity. 

Since time in optimization is iteration, the difference 

between teh iterations is 1. By considering V0 = 0, this 

equation can be rewritten as: 

𝑥𝑗
𝑖 =

1

2
(𝑥𝑗

𝑖 + 𝑥𝑗
𝑖−1) (33) 

Where 𝑖 ≥ 2 and 𝑥𝑗
𝑖 indicate the position of the ith 

follower salp in the jth dimension. To solve a multi-

objective problem, a set of solutions known as the optimal 

Pareto set is used. The SSA can move the salps towards the 

food source and update them during iterations. Still, this 

algorithm cannot solve multi-objective problems due to two 

reasons: 

1) The SSA saves only one solution as the best solution; 

therefore, it cannot store several solutions as the best 

solutions for a multi-objective problem. 

2) The SSA updates the food source with the best 

solution obtained so far in each iteration, but there is no 

single appropriate solution to multi-objective problems. 

The first problem can be resolved by equipping the 

SSA with a good source archive. This archive stores the best 

non-dominated solutions obtained so far during the 

optimization and is very similar to the MOPSO archive. 

This archive has maximum size to store a limited number 

of non-dominated solutions. During optimization, by using 

Pareto dominated operators, each salp is compared to all 

the residents of the archive. If a salp dominates a solution 

in the archive, it replaces the solution. If a salp dominates a 

set of solutions in the archive, they must all be eliminated 

and the salp is added to the archive. If at least one of the 

residents of the archive dominates a salp in the next 

population, it must be quickly released. If a salp does not 

dominate the residents of the archive, it must be added to 

the archive. These results can ensure that the archive 

always stores non-dominated solutions obtained so far by 
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the algorithm. Still, there is a certain case, in which the 

archive is full, and a salp does not dominate the residents. 

The simplest solution is to randomly delete a resident 

and replace it with a non-dominated salt. A more 

reasonable approach is to eliminate a similar non-

dominated solution in the archive. A comparative multi-

objective algorithm must be able to find optimal Pareto 

solutions with a uniform distribution. As such, the best 

candidate for deletion from the archive is one that is located 

in a populous area. This method improves the distribution 

of residents in the archive during iterations. To find non-

dominated solutions with a populous neighborhood, the 

number of neighborhood solutions is enumerated with 

specific maximum distance and is assumed. 

This distance is defined as the difference between two 

maximum and minimum vectors based on the total 

number, where the values of the two vectors aim to store 

the maximum and minimum values of each objective. The 

archive holds a solution in each part of the best case. After 

allocating one order to each resident based on the number 

of neighborhood solutions, a roulette is used to select one 

of them. The higher the number of neighborhood solutions 

for a solution, the higher the probability of its deletion from 

the archive would be. 

 
4.2. Fuzzy satisfaction method 

After obtaining a set of solutions in the first Pareto 

front, it is essential to use a proper secondary method to 

select the best planning design. Power system designers 

pursue different objectives and have different tastes as to 

the importance of each expansion design owner; therefore, 

to determine the satisfaction level related to each 

programming criterion, the fuzzy satisfaction method can 

be very beneficial in solving problems with multiple 

objective functions due to its simplicity and similarity to 

human judgment in decision-making. Each design is 

assigned fuzzy sets by equations known as membership 

functions. The membership function is specified as a 

descending uniform function with upper and lower limits. 

Based on the membership functions shown below, each 

solution is assigned a fuzzy value as follows: 

𝜇𝑓𝑥 =  

{
 
 

 
 0                           𝑓𝑖(𝑥) > 𝑓𝑖

𝑚𝑎𝑥

𝑓𝑖
𝑚𝑎𝑥 −   𝑓𝑖(𝑥)

𝑓𝑖
𝑚𝑎𝑥 − 𝑓𝑖

𝑚𝑖𝑛
            𝑓𝑖

𝑚𝑖𝑛 ≤ 𝑓𝑖(𝑥) ≤ 𝑓𝑖
𝑚𝑎𝑥     

1                                𝑓𝑖 ≤ 𝑓𝑖
𝑚𝑖𝑛

 (34) 

Where x is the index of each optimal design of the 

Pareto front; 

𝑓𝑖(𝑥) ... is the ith objective function belonging to design 
x; 𝜇𝑓𝑥   ... is the objective function of each design belonging 

to the ith criterion; and 𝑓𝑖
𝑚𝑎𝑥 and 𝑓𝑖

𝑚𝑖𝑛 are the minimum 

and maximum values of the ith criterion. Naturally, the 

closer the design to the minimum value, the closer the fuzzy 

value to 1, and vice versa.  

 

Fig 2. Membership function for programming criteria 

5. Case study 
The proposed TEP algorithm is applied to the IEEE 

24-bus test grid shown below and implemented in 

MATLAB. The network data for this system can be found in 

[34]. It is assumed that the system should be expanded for 

future conditions by increasing the generation and load 

demand by 1.61 times of its original values, i.e., load level of 

4590 MW and generation level of 5480 MW. These 

conditions belong to a 10% annual load increase rate with a 

five-year planning horizon. It is also assumed that the 

candidate branches can be constructed in all 34 existing 

paths, plus 10 new paths, the data of which are given in the 

appendix. The parameters of new lines in the existing paths 

are the same as the parameters of the existing lines. Due to 

environmental requirements, up to three branches can be 

installed in the existing and new paths and up to four power 

transformers in the substations. Herein, only the wholesale 

electricity market is foreseen. The value of 𝑉𝑂𝐿𝐿𝑆𝐻 is equal 

to 1000$/𝑀𝑊ℎand 𝑉𝑂𝐿𝐿𝐶𝑅 50$/𝑀𝑊ℎand. 
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Fig 3. Test IEEE 24-bus system 

For these conditions, by using the proposed algorithm 

with the population size of 200 and after 50 iterations, 41 

non-dominated solutions are found in the presence of 89 

DR sources and without them. Figure 4 illustrates these 

non-dominated solutions. Due to the difficulty of depiction 

in a 3D space, two 2D vectors are used. Note that solutions 

that look dominated in each figure are, in fact, non-

dominated by considering the third objective not shown in 

the figure. Fig 4a shows the reduction in congestion cost by 

increasing the investment, as well as less investment in the 

presence of DR sources. The least investment for 

completely removing the congestion is 121 M$ in the 

presence of DR sources and 137 M$ without DR sources. 

 

 

Fig 4. Distribution of Pareto solutions, a) congestion cost compared to 

investment, b) load cut-off cost per investment 

In finding the optimal design, based on Table 1, we 

examine two states with different values of satisfactory 

levels. The satisfactory level for the first objective 

(investment cost) is higher in the first state than the second 

one. In other words, in the first state, the decision-maker is 

inclined to less cost, while in the second state, higher costs 

are permissible. Tables 2 and 3 list the optimal design in 

two states of satisfactory levels for the presence and 

absence of DR sources. Based on Table 2, it is observed that 

without DR sources, the congestion cost severely rises. In 
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Table 3 without Dr sources, the investment and load cut-off 

costs are increased. 
Table 1. Satisfactory levels for the two states 

Satisfactory 

level 
𝝁𝒓𝟏 𝝁𝒓𝟐 𝝁𝒓𝟑 

Model 1 0.7 0.7 0.7 

Model 2 0.5 0.7 0.7 
Table 2. Characteristics of the optimal design for the first state 

Model 1 

IC 

(M$) 

TCS 

(*104$/h) 

LCC 

(*107$/h) 

With DR sources 185.3 0.48 0.04 

Without DR 

sources 
213.2 0.00095 0.14 

Table 3 presents the optimal value of acceptance of 

bids made by players participating in the DB program as a 

percentage per maximum permissible value for the first 

state. In this case, almost the maximum capacity of buses 1 

to 10 is used. These buses are optimal options for DR 

investors. 

Table 3. Optimal DB participation percentage in the first-case 

optimal design 

Year 

Bus 

 

Y1 Y2 Y3 Y4 Y5 

1 67.6% 100% 100% 100% 100% 

2 80% 100% 90% 100% 100% 

3 100% 100% 100% 100% 100% 

4 100% 100% 100% 100% 90% 

5 100% 100% 100% 100% 100% 

6 100% 100% 100% 100% 100% 

7 20% 100% 100% 100% 100% 

8 80% 100% 65% 100% 39% 

9 100% 100% 100% 100% 100% 

10 100% 100% 100% 100% 100% 

Table 4 shows the value of cut-off load for the first-case 

optimal design as a percentage per maximum permissible 

value. Evidently, in the presence of DR sources, load supply 

in bus 6 has faced problems and, every year, a percentage 

of load is forced to cut off. Thus, bus 6 is among the main 

candidates for further DR expansion or power station 

installation. Without DR, buses 5 and 6 face problems in 

the fifth year. Note that in this state, the congestion cost is 

very high. In the second state, by increasing the investment, 

the DB participation and cut-off load are reduced to 0 in the 

presence and absence of DR sources. 

Table 4. Percentage of cut-off load for the optimal first-state 

design 

 

Yea

r 

Bus 

Y1 Y2 Y3 Y4 Y5 

With 

DR 
8 

21

% 

39.2

% 

18.3

% 

12.8

% 

28.7

% 

Withou

t DR 

7 0% 0% 0% 0% 31% 

5 0% 0% 0% 0% 
18.2

% 

 

6. Conclusion 
In this paper, a dynamic multi-objective TEP was 

performed under reliability constraints in the market 

setting based on the DB DR program and price-dependent 

bids. These programs directly participated in the market 

clearing process and their impacts on the TEP were 

examined. Investment, congestion and load cut-off costs 

were selected as the objectives. The salp optimization 

algorithm, along with the AC network model, was proposed 

for the dynamic multi-objective programming. This 

method was implemented on a test IEEE 24-bus system in 

a five-year horizon with and without DR sources. Then, the 

optimal designs were selected from non-dominated 

solutions via the fuzzy satisfactory method with different 

levels. It was observed that at a higher level of satisfaction 

for the first objective, i.e., investment cost, the use of DR 

sources severely reduces congestion costs and, thus, helps 

create a more competitive electricity market. By decreasing 

the satisfaction level for the investment cost, the use of DR 

sources decreased the investment cost and load cut-off. In 

each case, the optimal value required for DB participation 

in each year was obtained for each bus to specify optimal 

buses for DR investors. 

 

Appendices 

The line characteristics for new paths are given in 

Table 6. The cost function for each GENCO is defined as 

.𝑎𝑔
𝑖 𝑝𝑔

𝑖2 + 𝑏𝑔
𝑖𝑝𝑔

𝑖 + 𝑐𝑔
𝑖  
Table 5. Line characteristics 

From To 

Capacity  

(MW) 

Resistance 

(p.u.) 

Reactance 

(p.u.) 

Investment 

cost (106$) 
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1 8 175 0.0348 0.1344 35 

2 7 175 0.0328 0.1267 25 

2 8 175 0.032 0.125 33 

6 7 175 0.0497 0.192 50 

6 8 175 0.049 0.19 18 

13 14 175 0.0057 0.0447 62 

14 23 175 0.0080 0.0620 86 

16 23 175 0.0105 0.0822 114 

19 23 175 0.0078 0.0606 84 

20 23 175 0.007 0.055 36 
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