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Highlights 
 

➢ Multi-layer perceptron-based method for biomass gasification is developed. 
➢ 𝐶𝑂2, 𝐶𝑂, 𝐻2 and 𝐶𝐻4 percentage in output gas composition is forecasted.  
➢ Effect of some input variables on the gas yield is assessed.  
➢ A good agreement of modeling and empirical data is obtained. 

 

Article Info  Abstract 

In the present work, the multi-layer perceptron neural network is applied to model biomass 
gasification in the fixed-bed downdraft gasifier. Therefore, the multi-layer perceptron neural 
network is implemented to analyze and predict the gas composition in the outlet flow of the gasifier 
concerning the𝐶𝐻4,𝐶𝑂2, 𝐻2 and 𝐶𝑂 concentrations. On the other hand, the input data for the 
prediction includes biomass element content (𝐶, 𝐻, and 𝑂), the value of the ash and moisture 
contents, and the temperature of the reduction zone. Extensive values which are derived from the 
experimental data are used to train the Multi-Layer Perceptron Neural Network. The obtained 
results from the model prediction show a satisfying agreement with the empirical data. The result 
of statistical analysis in the case of 𝑅2 values for 𝐶𝐻4 and 𝐶𝑂 is higher than 0.99, and for the 𝐶𝑂2 
and 𝐻2 is higher than 0.98, which shows a good agreement between the experimental and predicted 
data. Also, a comparative study between MLP and other well-known methods demonstrates the 
superiority of MLP for gasification yield prediction. Hence, this model can be a useful tool for the 
analysis and performance evaluation of the gasifier modules. 
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1. Introduction 
Environmental issues like air contamination and 

ecology destruction due to the utilization of fossil fuels have 

urged many nations toward using green and renewable 

energy resources [1,2]. In This regard, biomass, an 

accessible renewable energy source, is regarded as a 

sustainable framework for energy extraction. Biomass is 

one of the most significant sources of green, renewable, and 

sustainable energy which is sufficiently accessible [3]. 

There have been recognized a wide range of biomass 

resources, including wood and agricultural products (wood, 

logs, bark, and sawdust), solid wastes (municipal solid 

waste, garbage, industrial residues), etc. The major 
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contents of any biomass comprise cellulose, lignin, and 

hemicellulose [4]. Gasification of the biomass includes the 

partial oxidation changeover in a closed chamber to the 

gaseous product which is burned to release energy or 

utilized to value-added components generation [5]. Balat et 

al. [6], as well as Hosseini et al. [7], studied the biomass 

conversion into the hydrogen as a clean energy supply 

through different methods. Hydrogen has known as an 

environmental-friend, pollution-free and promising supply 

for providing demanded energy in various applications [8]. 

Hydrogen provides a variety of application in many sectors 

such as utilization in vehicles, feeding as fuel to many power 

generation systems such as fuel cells (FCs), heating and 
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cooling aims, etc. [9]. The biomass conversion can be done 

for different aims such as hydrogen production, gas 

production, a mix of gaseous including, 𝐶𝐻4, 𝐻2, 𝐶𝑂, 𝐶𝑂2 

within gasification process [10]. Investigating the 

gasification procedure function to enhance the gas 

production and component evaluation has been done in a 

wide range of literature. The gas composition in the product 

flow relies on the feedstock properties, the geometry of the 

gasification chamber, the content of the moisture in 

biomass, gasification medium, and the operational 

circumstances [11–15]. Amongst various gasification agents 

(steam, air, oxygen, etc.), air is regarded as the gasification 

media in the present work. Since the gasification process is 

an auto-thermal reforming procedure, it is possible to 

exploit the released heat from the exothermic reaction to 

supply the heat required for the endothermic reaction to 

continue the gasification process. The lower heating value 

(LHV) provided from the air gasification process is a value 

around 4­7 𝑀𝐽/𝑁𝑚3 [16]. The gasification process can be 

split into four steps including, drying process, pyrolysis 

stage, combustion (oxidation) step, and char gasification 

(reduction) [17]. 

Many researchers have also been formulated the 

gasification process in different domains, including 

thermodynamic equilibrium modeling, kinetic modeling, 

computational fluid dynamic modeling, and using artificial 

neural networks [18–20] to assess the gasification 

performance criteria concerning the output gas 

composition, gas yield, and the produced gas values and 

qualities. Mahishi et al. [21] utilized the thermodynamic 

equilibrium formulation to forecast the output gas 

composition for the biomass gasification aims. They 

studied the effect of some important parameters, including 

the ratio of steam to biomass and the equivalence ratio of 

the hydrogen production rate. Karmakar et al. [22] used the 

kinetic modeling for the evaluation of the gasification 

process of the rice husk in the fluidized bed gasifier in the 

presence of the steam as the gasification agent. Xue et al. 

[23] present the computational fluid dynamic (CFD) model 

for the simulation of biomass gasification in the fluidized 

bed gasifier. The solid phase component equation was 

coupled with gaseous phase equations. Their modeling is 

applied for the gasification of the wood in the presence of 

the air. Mikulandrić et al. [24] applied neural network 

methodology to identify the gasification process 

parameters in two different types of gasifiers. Artificial 

neural networks depend on a great quantity of 

experimental data and utilize mathematical regression to 

make a correlation between the entering and exiting values 

[19]. 

Among the various mathematical models, the 

application of neural networks is regarded in the present 

work. Neural network-based models do not need the 

mathematical formulation of the system's phenomenon. 

Hence, neural networks become suitable for the parameter 

identification and prediction of the nonlinear formulation, 

especially in the case of the biomass gasification process 

[25]. Besides, neural network methodologies can provide a 

highly efficient forecast with the same input parameters or 

even fewer parameters compared to the different modeling 

approaches. 

Neural network methodologies were widely applied in 

different fields such as signal processing, recognizing the 

patterns, simulation of the procedures, and nonlinear 

function evaluation [26]. Kalogirou [27] offered the 

artificial neural networks (ANN) methods as a promising 

scheme for predicting the key parameters in the energy 

systems. In the case of hydrogen yield, many researchers 

have been related to forecasting and optimizing the 

artificial neural network in hydrogen yields [28–31]. 

Besides, the utilization of ANN in the pyrolysis of the 

biomass and gasification procedure fields has been 

narrated in the different works [32–40]. Gue et al.proposed 

a hybrid modeling scheme comprising the multi-layer 

artificial neural network to forecast the output products 

and composition of each gas in the exit stream in the 

fluidized bed gasifier in the presence of the steam in 

atmospheric conditions. Xiao et al. [32] used ANN for the 

parameter's prognostication of the municipal waste 

biomass gasification process. Souza et al. [33] developed an 

ANN-based method for gasification modeling using a 

fluidized bed gasifier and various biomass contents in 

different circumstances. In another work, Sreejith et al. 

[34] described the capability of the ANN models in the 

gasification modeling. Puig et al.applied ANN for 

forecasting the composition of the gas in product flow in the 

circular bubbling fluidized bed gasifier. The hydrogen yield 

from the pyrolysis of the waste contents was evaluated 

using the ANN model by Karaci et al. [35]. Sun et al. [36] 

developed an ANN model for the prediction of gas 

composition in the gaseous product of industrial waste 

gasification. Pandey et al. [37] predicted the lower calorific 

value of gaseous components in the waste pyrolysis by 

applying the ANN-based method. Moreover, Aydinli et al. 

[38] applied the ANN method for the prediction of the 

gasification procedure and energy potentiality of the 

biomass. Sunphorka et al. [39] stated the application of the 

ANN to predict the kinetic values of biomass from its 

components. Baruah et al. [40] used ANN modeling for the 

prediction of the gas yield in a fixed bed downdraft gasifier. 

Besides the reported literature review, for coal gasification, 
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ANN modeling is used in various papers [41–43]. Li et al. 

[44] used PSO-optimized back propagation neural network 

(BPNN) to assess the gas components in the gaseous flow 

of coal gasification in a fluidized bed gasification plant. 

From the literature review, there are a few cases of 

MLP-based models that have been used for the modeling 

and identification of biomass gasification in fixed bed 

downdraft gasifiers. In the present work, the multi-layer 

perceptron neural network is applied for the modeling of 

the biomass gasification in the fixed-bed downdraft types of 

gasifiers since there is a relatively small number of neural 

network applications in the field of biomass gasification, 

especially in the case of the fixed-bed downdraft gasifiers. 

The downdraft gasifiers are the most-used type of gasifiers 

that are generally utilized in small-scale applications. 

 

2. Biomass gasification process 
Gasification is a process that includes a series of 

chemical phenomena, including drying, pyrolysis or 

thermal decomposition, oxidation, and reduction. The 

drying process is the step in which the biomass moisture 

content decreases. The process occurs in a medium with a 

temperature in the range of [100, 200 ℃], and the moisture 

content reduces to lower than 5%. The next step is the 

pyrolysis or decomposition process, in which the 

breakdown of the raw materials occurs in the absence of air 

or oxygen. The output composition of this step includes 𝐶𝑂, 

𝐻2, 𝐶𝑂2, hydrocarbon gases, and solid charcoal. The 

hydrocarbon gases then condense to the liquid tar. Then, 

the released gases from the previous steps pass the 

oxidation stage based on the gasification type. Solid forms 

of carbonized biomass oxidize to carbon dioxide, and the 

hydrogen also burns into water. The oxidation reaction is 

an exothermic reaction that provides the heat for three 

other steps in the gasification process.  The next zone in the 

gasification is reduction reactions that occur in a 

temperature range of 800,1000℃ and is an endothermic 

process [45]. The most important reactions occur in the 

reaction zone comprising the following reactions: 

Water-gas reaction 𝐶 + 𝐻2𝑂 → 𝐶𝑂 + 𝐻2 Δ𝐻 = 131.4 𝑘𝐽/𝑚𝑜𝑙  

Boudouard reaction 𝐶 + 𝐶𝑂2 → 2𝐶𝑂 Δ𝐻 = 172.6 𝑘𝐽/𝑚𝑜𝑙 

Shift reaction 𝐶𝑂2 + 𝐻2 → 𝐶𝑂 + 𝐻2𝑂 Δ𝐻 = 42 𝑘𝐽/𝑚𝑜𝑙 

Methane formation 

reaction 

𝐶 + 2𝐻2 → 𝐶𝐻4 Δ𝐻 = 75 𝑘𝐽/𝑚𝑜𝑙 

There are various types of gasifiers, including fixed-

bed, fluidized-bed, and entrained suspension gasifiers [46]. 

The fixed-bed gasifiers are also comprising some models 

such as updraft, downdraft, and cross-flow gasifiers [47]. In 

this study, a fixed-bed downdraft gasifier is employed for 

detailed analysis. Fig. 1 illustrates a schematic of a fixed-

bed downdraft gasifier. 

 

Fig. 1. Schematic of fixed-bed downdraft gasifier.  

3. Prediction methodology 
Simulation and modeling provide an excellent 

opportunity to determine the key parameters' effect on 

system performance. In this regard, intelligent methods 

provide lower computational costs and higher accuracy. 

Artificial neural networks can model complex nonlinear 

models. A Multi-Layer Perceptron Neural Network 

(MLPNN) is proposed for a fixed-bed downdraft gasifier to 

investigate the gasifier gas composition. 

 
3.1. Multi-Layer Perceptron Neural Network 

methodology 

Multi-Layer Perceptron Neural Network (MLPNN) is 

one of the robust neural networks applied for highly 

nonlinear systems. Also, the MLP neural network is a feed-

forward network capable of nonlinear fittings with higher 

precision [48–52]. 
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For the formulation of the MLP, the number of input 

neurons is considered 𝑛, the number of hidden layer 

neurons is regarded as ℎ, and the number for the output 

layers node is given 𝑚. The weighted summation of the 

input layer is presented as follows: 

𝑠𝑗 = ∑(𝑤𝑖𝑗𝑥𝑖) − 𝜃𝑗 , 𝑗 = 1, 2, … , ℎ

𝑛

𝑖=1

 (1) 

Herein, 𝑤𝑖𝑗is the connection weight of 𝑖𝑡ℎ node in the 

input layer and the 𝑗𝑡ℎ node of the hidden layer, The 𝜃𝑗 

denotes the 𝑗𝑡ℎ node's bias in the hidden layer, and 𝑥𝑖 stands 

for the 𝑖𝑡ℎinput.  

The following equation defines the output of a node in 

the hidden layer. 

𝑆𝑗 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑠𝑗) =
1

1 + 𝑒−𝑠𝑗  
 , 𝑗 = 1, 2, … , 𝑚 (2) 

Following the calculation of the hidden layer output, 

the final output values are determined as the latter relation. 

𝑜𝑘 = ∑ 𝑤𝑗𝑘𝑆𝑗 − 𝜃𝑘
′ , 𝑘 = 1, 2, … , 𝑚

ℎ

𝑗=1

 (3) 

𝑂𝑘 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑜𝑘) =
1

1 + 𝑒−𝑜𝑘  
 , 𝑘 = 1, 2, … , 𝑚 (4) 

Therein, 𝑤𝑖𝑗𝑘is the connection weight of 𝑗𝑡ℎ node in the 

hidden layer and the 𝑘𝑡ℎ node of the output layer and The 

𝜃𝑘
′  denotes the 𝑘𝑡ℎ node's bias in the output layer. The 

weight function and bias of the layers are the key parts of 

the MLP. 

Training a neural network is an essential process to 

find the optimal values of weights and bias matrices. The 

most appropriate training method for the feed-forward 

neural network is the back-propagation algorithm. The 

nodes in the back-propagation network are organized in 

layers and each layer's output creates the input of the 

succeeding layer [49]. Three layers of MLP (input, hidden, 

and output) are linked within the network parameters, 

including weights and biases. Different training algorithms 

are selected for the training of the MLP. The algorithms 

used for the training aims in the present work comprise 

Conjugate Gradient, Gradient Descent, and Bayesian 

Adjustment for Confounding, and Levenberg-Marquardt 

algorithms [50]. 

 
3.2. Performance evaluation and stopping 

metrics for MLP 

Various performance criteria can be used for the 

determination of the MLP neural networks. Evaluation of 

errors and analyzing the difference between experimental 

and modeling data are the most conventional indicators for 

stopping. In the present work, the statistical parameters 

include the correlation coefficient (𝑅2), Root Mean Squared 

Error (𝑅𝑀𝑆𝐸), and Average Absolute Relative Error (𝐴𝐴𝑅𝐸) 

are adopted to evaluate the MLP performance [51]. 

The correlation factor is defined as the following 

equation: 

𝑅 =
1

𝑁 − 1
∑(

𝑌𝑖
𝐸𝑥𝑝

− 𝑌̅

𝑆𝑡𝐸𝑥𝑝
) (

𝑌𝑖
𝑀𝐿𝑃 − 𝑌̅

𝑆𝑡𝑀𝐿𝑃
)  

𝑁

𝑖=1

 (5) 

The squared correlation coefficient is defined as 

follows: 

𝑅2 =
∑ (𝑌𝑖

𝐸𝑥𝑝
− 𝑌̅)

2
− ∑ (𝑌𝑖

𝐸𝑥𝑝
− 𝑌𝑖

𝑀𝐿𝑃)
2𝑁

𝑖=1
𝑁
𝑖=1

∑ (𝑌𝑖
𝐸𝑥𝑝

− 𝑌̅)
2

𝑁
𝑖=1

 (6) 

Herein, 𝑌𝑖
𝐸𝑥𝑝

 stands for the experimental values, 𝑌̅ 

represents the average of the empirical value, 𝑌𝑖
𝑀𝐿𝑃 is the 

values calculated from the MLP neural network, and 𝑁 is 

the number of samples. 

The Root Mean Squared Error is given by: 

𝑅𝑀𝑆𝐸 = √∑ (𝑌𝑖
𝐸𝑥𝑝

− 𝑌𝑖
𝑀𝐿𝑃)

2𝑁
𝑖=1

𝑁
  (7) 

Also, for better analysis of the MLP effect on the 

forecasting process, the normalized RMSE metric is 

presented as follows: 

𝑁𝑅𝑀𝑆𝐸 =

√∑ (𝑌𝑖
𝐸𝑥𝑝

− 𝑌𝑖
𝑀𝐿𝑃)

2𝑁
𝑖=1

𝑁
 

𝑌𝑚𝑎𝑥 − 𝑌𝑚𝑖𝑛

 

(8) 

According to the stopping criteria, the lowest values of 

𝑁𝑅𝑆𝑀𝐸 and 𝑅𝑆𝑀𝐸 are the most desirable, while the highest 

values of 𝑅2 is acceptable. The highest value of the 𝑅2 is one, 

so the values adjacent to one show the higher performance 

of the network. 

 
3.3. Multi-layer perceptron flowchart 

In this subsection, the MLP neural network is 

presented. Fig. 2 illustrates the MLP flowchart. Hidden 

layers' numbers and neurons number in the hidden layers 

are the key parameters in the multi-layer perceptron neural 

network. These numbers must be selected so that the over-

fitting and under-fitting are avoided. Hence, the neural 

network structure should be designed with the lowest 

number of neurons. 
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Fig. 2. Training, testing, and validation flowchart of MLP neural 

network. 

3.4. Data acquisition for simulation 

The data used for the simulation of the downdraft 

fixed-bed gasifier parameters comprises a dataset from 

various empirical execution of wood gasification. The 

variables are used as the input values for the formulation of 

MLP are Moisture content (MC), ash content, Carbon 

content, Hydrogen content, and Oxygen content, as well as 

the temperature of the reduction phase (𝑇𝑅) [19- 35]. Table 

1 presents the input and output parameters in the MLP-

based model. 

Table 1. Input and output variable bounds.  

variable range 

Input 

𝐶 (wt % , dry basis) [43.83, 53.40] 

𝐻 (wt % , dry basis) [5.42, 7.18] 

𝑂 (wt % , dry basis) [37.24, 45.83] 

𝐴𝑠ℎ (wt % , dry basis) [4.20, 14.70] 

𝑀𝐶 (wt % , dry basis) [43.83, 53.40] 

𝑇𝑅 (℃) [600, 1206] 

Output 

𝐶𝑂 (%) [10.83, 24.00] 

𝐶𝐻4 (%) [2.00, 6.91] 

𝐶𝑂2 (%) [9.30 19.00] 

𝐻2 (%) [10.02, 23.93] 

 
3.5. Network training, validation, and testing 

Using the Multi-Layer Perceptron neural network 

model, the experimental datasets were applied to model the 

output gas composition. The data collections were 

randomly segmented into three parts. The first part of the 

dataset comprising 70 % was applied for training the 

network, the second part, including 15%, was used for 

validation, and the third part of datasets containing 

15%was adopted for testing. Algorithms like Conjugate 

Gradient, Gradient Descent, Bayesian Adjustment for 

Confounding, and Levenberg-Marquardt were used to train 

the Multi-Layer Perceptron neural network model. Fig. 3 

illustrates the application of the various algorithm to the 

MLP neural network. Based on Fig. 3, the optimum 

optimizing algorithm is the Levenberg-Marquardt method 

that is running based on the TRAINLM function. Various 

structures for the MLP can be defined by the aim of the 

assessment factors. However, the best case for the MLP 

structure is selected. The best structure for the MLP Model 

consists of an input layer with six different parameters, 

including 𝐶, 𝑂, 𝐻, 𝑀𝐶, ash, and 𝑇𝑅 and a hidden layer with 

five neurons and an output layer with four different 

variables comprising  𝐶𝐻4, 𝐶𝑂, 𝐶𝑂2, and 𝐻2 percent. Fig.4 

shows the MLP neural network architecture. 
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Fig. 3. Evaluation metrics for the different algorithms. 

 

Fig. 4. MLP configuration for forecasting the output composition. 

4. Results and discussion 
The modeling and laboratory results are plotted in Fig. 

5 and show a satisfactory agreement based on the 

regression criteria for output components, i.e., 𝐶𝑂2, 𝐻2, 

𝐶𝐻4, and 𝐶𝑂. As can be seen, the correlation coefficient (𝑅2) 

for 𝐶𝐻4 and 𝐶𝑂 is greater than 0.99 while this value is 

greater than 0.98 for 𝐶𝑂2 and 𝐻2.  Moreover, the Root Mean 

Squared Error (RMSE) values for 𝐶𝑂, 𝐶𝐻4, 𝐻2, and 𝐶𝑂2 

were found 0.0675, 0.0527, 0.0925, and 0.0885, 

respectively.
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(c) (d) 

Fig. 5. Empirical data vs. predicted data by MLP model. 

 

A comparison between modeling and experimental 

data is illustrated in Fig. 6, in which a good agreement 

between the empirical and modeling data is obvious. The 

average relative error between the experimental and 

modeling data is around 2.64 %. As can be seen, the best 

agreement with the lowest relative error belongs to the 𝐶𝑂2. 

 

Fig. 6. Comparison between empirical and modeling data for major gas 

components. 

Fig. 7 presents the effect of input parameters ( 𝐶, 𝑂, 𝐻, 

𝑀𝐶, ash, and 𝑇𝑅) on the outputs (𝐶𝑂2, 𝐻2, 𝐶𝐻4, and 𝐶𝑂) 

composition.  Based on Fig. 7, the reduction temperature 

(𝑇𝑟) has the highest impact on the output yield of the 𝐶𝑂 

and 𝐻2 and ranked second in effect on the 𝐶𝐻4 and 𝐶𝑂2 

prediction. Moisture Content (𝑀𝐶) was known to have the 

same effect on the 𝐶𝑂, 𝐶𝐻4, and 𝐻2 while it has a greater 

influence on the 𝐶𝑂2 yield. 𝐻 content in the biomass (% 𝑤𝑡) 

was found in the second rank in effect on the 𝐶𝑂 yield, in 

the third rank in effect on the 𝐻2 yield, while ranked fourth 

in the case of 𝐶𝑂2 and 𝐶𝐻4. Ash content in the dry biomass 

has the highest impact on the 𝐶𝐻4 prediction, while in the 

case of the 𝐶𝑂2, the highest impact belongs to 𝐶. Greater 

ash content may result in some side effects, for instance: 

fouling, agglomeration, and gasifier corrosion.  

 

Fig. 7. Input variables effect on the gas yield.  

In addition, the obtained results using the proposed 

MLP structure are compared with two other well-known 

neural networks to validate the efficiency of the proposed 

method for the case of gasification yield prediction. Table 2 

lists the obtained results for all methods, which 

demonstrates the higher efficiency of the proposed MLP 

structure. 

Table 2. Different criteria of various methods to evaluate the 

prediction precision 
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Method Yield 𝑹𝟐 𝑹𝑴𝑺𝑬 𝑵𝑹𝑴𝑺𝑬 

RBF neural 

network 

𝐶𝑂 0.9747 0.0694 0.5269 

𝐶𝐻4 0.9836 0.0603 1.2281 

𝐶𝑂2 0.9584 0.0894 0.9216 

𝐻2 0.9894 0.0904 0.6499 

Artificial 

neural 

network 

𝐶𝑂 0.9865 0.0749 0.5687 

𝐶𝐻4 0.9757 0.0583 1.1873 

𝐶𝑂2 0.9902 0.0857 0.8835 

𝐻2 0.9684 0.0987 0.7096 

Proposed 

MLP 

𝐶𝑂 0.9923 0.0675 0.5125 

𝐶𝐻4 0.9931 0.0527 1.0733 

𝐶𝑂2 0.9891 0.0885 0.9123 

𝐻2 0.9861 0.0925 0.6650 

5. Conclusion 
There are a few studies of MLP neural network-based 

simulations of the biomass gasification process. An MLP 

model is proposed to evaluate the biomass properties and 

also operational circumstances according to the empirical 

datasets. The evaluation of the statistical criteria showed 

that the efficiency of the proposed model is satisfactory. 

The satisfactory efficiency of the developed model is also a 

metric that reveals the choice of parameters for the input 

layer was proper. Forecasting the gas yield in the gasifier 

exit with six different input variables in the input layer and 

with five neurons in the hidden layer by applying the back-

propagation algorithm has been proposed. The proposed 

MLP neural network revealed a good agreement with a 

squared regression coefficient greater than 0.99 for the 𝐶𝐻4 

and 𝐶𝑂 prediction while this value for the 𝐶𝑂2 and 𝐻2 is 

obtained greater than 0.98. Based on the study, there are 

different parameters that influence the gas composition in 

the gasifier outlet. The reduction temperature (𝑇𝑟) had the 

greatest effect on the output yield of the 𝐶𝑂 and 𝐻2 and 

ranked second in effect on the 𝐶𝐻4 and 𝐶𝑂2 prediction. 

Forecasted values also trace the empirical trend based on 

the reduction temperature variation. The proposed MLP 

model with prosperous generalization abilities is a helpful 

method in mapping biomass gasification and evaluating the 

overall gasifier efficiency.  
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