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Article Info  Abstract 

Channel estimation plays a vital role in the performance of wireless communication systems. 
However, apart from the usual OFDM modes, there are also orthogonal conditions for modulation-
based multi-channel systems which making channel estimation on networks such as the Internet of 
Things (IoT) more complex. To estimate the IoT channel, its type is considered as narrow or wide 
band. The purpose of this research is narrowband IoT based on OFDM. There are various classical 
methods for channel estimation such as Least Squares (LS) and Linear Minimum Mean Square 
Error (LMMSE). However, due to high computational complexity as well as inaccurate channel 
estimation and remaining weaknesses such as latency and other quality of service criteria, especially 
Bit Error Rate (BER), Signal to Noise Ratio (SNR) and Maximum to Average Power Ratio (PAPR), 
this research Improves these two methods based on the Deep Extended Kalman filter. 
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1. Introduction 
Internet of Things is complex system which suggest 

extensive communication by using sensor in physical 

things, radio frequency identification (RFID) tags, vehicles, 

actuators, sensors, and other electronics embedded on the 

Internet. The IoT provide objects to connect with their 

sensors to network and devices can interact with each other 

through unique addressing schemes. This job can reduce 

additional deployment costs and also improve accuracy and 

performance. A lot of wireless devices will be connected to 

the IoT at future [1]. Nokia INC. predicted that by 2025 

about 30 billion connected IoT devices will be deployed 

based on Machina research which is about 23% of the 

cellular state of the IoT and low-power modules[2]. In 

addition, mobile broadband networks infrastructure needs 
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low delay and high throughput with low power, low 

bandwidth, low network coverage, low cost, low 

computational complexity, and better scalability efficiency 

[3–6] 

Existing cellular standards including 4G, do not 

support IoT connectivity. In addition, obtaining channel 

status information required for effective transmission will 

be costly, thus provide IoT conncetions even more 

challenging. It is noteworthy that IoT network data 

transmission traffic is usually scattered, meaning that only 

some devices are busy and some others are idle at any given 

time. For example, Wireless Sensor Networks (WSNs) 

designed as sleep/idle nodes/device which can created only 

with external events to save energy. Using scattering can 

support simultaneously with efficient schemes to detect 
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device activity and channel estimation in the device activity 

pattern. It is noteworthy that it cannot possible to assign 

orthogonal signature sequences to all nodes/devices, so, 

channel estimation concept created in this field to solve 

these kinds of problems. 

There are a lot of wireless communication 

technologies with short-ranges [7,8] such as Low Power 

Bluetooth (BLE), Z-Wave, 6LowPan, Wi-Fi, Li-Fi, ZigBee 

and etc. to enable IoT. Some IoT-equipped technologies 

operate in a licensed band such as SigFox and LoRa 

[9,10](i.e. industrial, scientific, and medical band, or ISM). 

On the other hand, the global mobile communications 

system and the Third Generation Partnership Project, 

(3GPP) or Long-Term Evolution (LTE) standard are 

operating within the range allowed to enable IoT. A new IoT 

technology which is named IoT narrowband is specifically 

designed for low-level IoT applications. 3GPP finalized the 

specification of narrowband IoT in the LTE-13 version [11]. 

It is safe and reliable for data transmission due to its 

location in the authorized range of the global mobile 

communication system or LTE. Narrow-band IoT provides 

the IoT with a wide variety of applications, including smart 

metering, smart cities, smart water, smart environment, 

smart farming, retailing, logistics, security and 

emergencies, industrial control and home automation. 

Therefore, the state of the narrowband IoT channel is very 

complex due to the various application scenarios. 

A channel described as every data from the source to 

the radio signal sink. The channel contains physical 

environment (waveguides, fiber, free space, and etc.) 

between the receiver and transmitter through the 

transmitted signal. The word channel refers to this physical 

environment during this task. A necessary feature of any 

physical environment is to transmit signal and receive it at 

the receiver, broken down in various ways by frequency and 

phase distortion, interference between the symbol and 

thermal noise. Channel Mode Information (CSI) refers to 

the recognized channel characteristics of a communication 

link in wireless communication. This information explains 

that how a signal is transmitted from the transmitter to the 

receiver and indicate a combined effect for example fading, 

scattering, and power reduction at any distance. CSI 

enables transmission compatibility during channel 

conditions which is critical to achieving stable high-speed 

data communication of antenna systems. CSI must be 

estimate and predict at the receiver or quantize, then it can 

be sent to the transmitter. 

Channel estimation may or may not use the training 

sequence. Accordingly, there are two methods for 

estimation. These two are channel sequence-based/pilot 

estimation and blind channel estimation. The purpose of 

channel estimation methods and algorithms is to minimize 

and optimize the Mean Square Error (MSE). After creating 

an estimation model, its parameters must be constantly 

updated (estimated) to minimize the error by changing the 

channel. If the receiver is aware of the information 

transmitted through the previous channel, it can use this 

knowledge to achieve an accurate channel estimation in 

impact response. This method is simply called channel 

sequencing estimation. Otherwise the estimate is blind. 

Channel estimation plays vital role in communicational 

systems, especially in the long-term evolution of 3GPP, 

which aims to continue the competition of global mobile 

communication system technology. OFDM is considered as 

one of the key 3GPP technologies to improve the quantity 

and quality of communication and mobile communication 

system capacity. Because high mobility support is required 

on 3GPP systems, OFDM receiver signals are likely to 

change rapidly with a multi-channel channel. Therefore, 

estimation and good channel parity at the receiver are 

required before coherent modulation of OFDM symbols. In 

mobile communications, since the radio channel is 

modeled by some additional dominant paths and 

represented by path bumps, channel estimation is 

consistent and efficient for channel tracking. 

In this new information age, the idea of using multiple 

antennas when transmitting and receiving has made 

significant progress in the communication system in a 

network such as the IoT. One of the major advantages of 

Multi-Input Multi-Output (MIMO) technology is the ability 

to reduce the Symbol Error Rate (SER) in multi-channel 

due to increased spatial variability. Variation is the result of 

a combination of signals at the receiver in end-to-end mode 

that fade independently, so the signal can be received with 

minimal error at the receiver end. In MIMO system, 

increasing bandwidth efficiency and system reliability is 

achieved without using additional bandwidth or 

transferring more energy to the channel. MIMO has been 

shown to have a higher capability than Single-Input-Single-

Output (SISO) systems.[12] 

Since the narrowband IoT is still in its initial levels, 

there is still no proper guideline in the current literature for 

efficiently estimating and equalizing channels. Channel 

signal based on pilot signal for Orthogonal Frequency 

Division Multiplexing systems (OFDM) and Single-Carrier 

Frequency Division Multiple Access (SC-FDMA) has been 

well studied, for example in [13] and [14] this is explained 

in details. In the literature, more researches of narrowband 

IoT surveyed in frame structure design [15], link planning 

and compatibility [16], random access method [17], and 

system access [18]. The performance of narrowband IoT 

positioning has been investigated in [19,20]. In [[21], the 
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performance of three traditional channel estimators is 

investigated only for the distance below the 15 kHz carrier. 

[22] The issue of channel parity and the coexistence of 

narrowband and LTE IoT signals are supported only using 

the traditional distance below the LTE carrier. To the best 

of our knowledge, the estimated narrowband IoT 

connection channel with a 3.75 kHz sub-carrier distance 

has not yet been studied. Therefore, OFDM-based 

narrowband IoT channels efficient estimation is a 

prerequisite for improving coverage, standardization, and 

decoding signal at the receiver. 

The peak-to-average power ratio (PAPR) criteria in a 

narrowband IoT connection can increase the efficiency of 

the low-cost power amplifier. Low bandwidth radiation is 

desired the transmitter connectivity because of very narrow 

bandwidth. The PAPR challenge is the most troubling 

problem in the IoT. Power amplifier performance is critical 

to low-power, narrow-band, low-battery IoT equipment. 

Therefore, low PAPR is the ultimate requirement in 

internal narrowband IoT connectors due to low power 

amplifier. PAPR reduction techniques such as scramble, 

Discrete Fourier Transform (DFT) and constellation (CP) 

insertion can be applied to the link junction transmitter. 

Narrowband IoT supports modulation schemes such as 

BPSK and QPSK, which are also resistant to PAPR by 

applying constellation rotation to create a smooth 

transition between constellation points. However, these 

techniques have not been fully preserved. Further 

reduction of PAPR will be in high demand in the 

connection, because the IoT transmitter is low-cost and 

low-consumption. In [23], the authors evaluated the PAPR 

values using the employing Root-Raised Cosine  Pulse 

Shaping (RRC-PS) for single data transmission only. This 

article is the first one which want to analysis partial PAPR 

on a narrowband IoT transmitter.[24–26] 

Broadband IoT created by 3GPP which is the key 

technology to face with broadband IoT connectivity 

demands for 5G wireless communication systems 

development in the future. It can be run in three different 

operating modes as specified by 3GPP in version 13 [27,28]: 

stand-alone band, in-band and shield band. Broadband IoT 

can be deployed by replacing one or more GHM carriers at 

200 kHz, which is called stand-alone mode. Using all the 

transmission power in the evolved eNB node, also known 

as the base station, the radio coverage of the IoT 

narrowband can be significantly increased. In band 

operation, it can be implemented inside the LTE carrier 

using one or more Physical Resources Blocks (PRB). The 

PRB corresponds to a bandwidth of 180 kHz. LTE and 

narrowband IoT share all transmission power in eNB. By 

increasing the power in the PRB of the IoT narrowband, 

large-scale coverage can also be achieved. Spectrum 

efficiency can also be increased by sharing PRB between 

LTE and the IoT. The third option can be used in the unused 

protective band of the LTE carrier. This is only allowed for 

LTE system bandwidth of 5 MHz or higher. Bandwidth 

deployments and IoT Bandwidth uses the available radio 

frequency of the existing LTE base station and baseband 

numbering with some modifications for use in bandwidth 

[29]. The coexistence of LTE and the IoT has been 

investigated through detailed simulations in. Therefore, the 

cost of additional deployment and operation time will not 

be borne. Operating modes must be known when working 

with the IoT and narrowband and searching for the IoT. 

Narrowband IoT supports 100 kHz channel rasters. 

Narrowband IoT channels and signals are based on 

existing LTE channels. Also signals are based on the 

required modifications and simplifications commensurate 

with the 180 kHz 3GPP bandwidth. 3GPP is specified as 180 

kHz system bandwidth for sub-link and high-link 

transmissions. The narrowband IoT only supports 

Frequency Division Duplexing (FDD) with semi-two-way 

transmission. Underneath the link, the IoT inherits a 

subnet link from existing LTE, although there is more 

limited support, and the IEE, like LTE, uses OFDM at a 

distance of less than 15 kHz. 

To achieve extensive coverage and increase 

transmission robustness, duplication of the same user data 

and corresponding control signaling over a long period of 

time should be consider as an important solution in the 

3GPP standard for link transfer. The iteration technique 

means that the receiver can decode the received signal, even 

if the noise power is much higher than the signal strength. 

In particular, the modulation of the SC-FDMA in the 

narrowband IoT connection band is sensitive to residual 

channel estimation errors and parity. Hence, SC-FDMA 

inherently extends errors to all dedicated subcarriers in the 

decoder phase at the receiver. Therefore, effective channel 

estimation and standardization are necessarily required in 

an iteration-based transfer scenario, and a prerequisite is 

to achieve coverage and transmission reliability. Channel 

estimation in hybrid narrowband IoT systems can be 

performed using the Narrowband Demodulation Reference 

Signal (NDMRS) previously known to the receiver, also 

known as test symbols. Many experimental layout schemes 

and channel estimation methods have been proposed and 

reviewed in previous research for the traditional OFMD 

system[30–33] . The arrangement of block-type training 

symbols (e.g., introductory pilot design) in which all pilot 

carriers occupy a SC-FDMA symbol is specified for 

narrowband IoT systems [34–36]. There are several 

methods for pilot-assisted channel estimation in the 
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literature, including Least Squares (LS) at [37,38], Linear 

Minimum Mean Square Error (LMMSE) at [39,40], 

Maximum Likelihood (ML) at [41]. And many pilot-assisted 

channel estimation methods have been reported in [42] for 

bandwidth applications in the traditional OFDM system. 

Recently, a semi-blind scattered channel estimation 

algorithm optimized for MIMO OFDM systems has been 

investigated [43]. In addition, common and channel phase 

noise estimation [44] and maximum posterior estimator 

[45] have shown significant performance improvements in 

high complexity costs with power consumption. Estimation 

and compensation in this work is outside the scope of this 

research. 

In this research, a model of narrowband IoT system 

with respect to OFDM is presented to channel estimation. 

The reason for this work is the narrowband IoT systems 

transmission is more complex than the short links 

transmission. This study considers both types of 

transmission schemes and sub-carrier distances for 

estimating the narrowband IoT channel based on OFDM 

and PAPR analysis. The model of this research is the 

application of a special Kalman filter that is also being 

developed. The used Kalman filter, also known as the 

Extended Kalman filter (EKF) is an algorithm that uses a 

series of measurements made over time to generate noise 

(random changes) and the accuracy and estimation of 

unknown variables which is more accurate than those 

based on a single measurement. Formally, the EKF works 

recursively on high-noise input data streams to produce a 

statistically optimal estimate of the underlying state of the 

system. The EKF uses a form of return control to estimate 

the process: The filter estimates the state of the process for 

a period of time and then obtains feedback as a measure 

(full noise). Similarly, EKF equations are divided into two 

groups: time update equations and measurement update 

equations. The update equations of time have the task of 

predicting (in time) the current situation and estimating 

the error covariance to obtain the previous estimates for the 

next step. Measurement update equations are responsible 

for feedback. This model has been improved to combine 

new measurements in the previous estimate to obtain a 

posterior estimate. Time update equations can be 

considered predictive equations, while measurement 

update equations can be considered corrective equations. 

In fact, the final estimation algorithm is similar to the 

prediction-correction algorithm for solving numerical 

problems. The EKF works in a two-step process. In the 

prediction phase, the EKF generates current state variables 

estimation with their uncertainties. When the result of the 

next measurement is observed (necessarily with some 

error, including random noise), these estimates are 

updated using a weighted average, and more weight is given 

to the estimates with more confidence. There are four 

contributions in this article which listed below: 

This study provides a brief overview of OFDM-based 

narrowband IoT technology including deployment options, 

physical channels and signals, link frame structure, and 

resource unit definition. The OFDM-based narrowband IoT 

signal reception model will be derived as a function of 

signal channel and channel disturbances. NDMRS and time 

frequency mapping will also be provided. 

This research presents two NDMRS-assisted 

algorithms for channel estimation which use LS estimator 

and the MMSE in the EKF developed with deep learning 

that can objectify the complex channel conditions of 

narrowband IoT based on OFDM. Through the following 

simulation, the effect of the proposed algorithm can be 

investigated and confirmed in comparison with 

conventional LS and MMSE methods based on BER criteria 

related to SNR. In this section, a random sorting in the 

efficient conversion range of LS and MMSE is presented 

based on the EKF developed with deep learning to reduce 

the error experienced estimation in traditional LS and 

MMSE method. This works can deal with error estimation 

by using different additional operations in estimating the 

LS without occupying additional frequency band resources 

and increasing the computational complexity significantly. 

Next, a low-complexity noise reduction based on the EKF 

developed with a deep learning specifically to develop a 

very low-performance SNR considering the effect of energy 

staining on Channel Impact Response (CIR) at frequency 

limits. Then, the LMMSE approximation estimator with 

reduced sub-optimal complexity based on the estimates of 

the EKF developed with deep learning versus the optimal 

methods is proposed as the main reference of this research. 

This ignores the channel relationship between the 

shutdown modes in the time domain and separately 

suppresses the MSE per estimated stroke of the filtered 

channel. 

Finally, the signal processing of the narrowband IoT 

connector receiver will be based on OFDM. In the first step, 

the channel estimation for the whole-time frequency 

network is calculated using the dimensional linear 

interpolation of the channel estimation time in a sub-frame 

of a source unit. In the second step, by considering the 

mismatch between the base frequency processing of the 

radio frequency and the sampling rate between the 

transmitter of the narrowband IoT device based on OFDM 

and the receiver of the LTE base station, the frequency 

domain channel equalization is implemented. A one-stroke 

equalizer per sub-equal is used to calculate the channel 

parity coefficients. Performance of the proposed estimators 
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by accurately simulating the connection level in terms of 

MSE, BLER and fast connection of narrowband IoT-based 

OFDM versus SNR within the 3GPP-based OFDM-based 

narrowband connection specification system approved. 

In addition, theoretical PAPR analysis for OFDM-

based narrowband Raised-Cosine (RC) and Square Root 

Raised-Cosine (RRC) pulse shaping filters is presented. 

Also represented a comparison of PAPR values obtained 

with and without Pulse Forming (PS) filtering through 

simulations for single-instant and multi-instantaneous 

transmission. Numerical results should show that the 

PAPR’s RC and RRC method is possible to implement an 

OFDM-based narrowband connection transmitter. 

 
2. Literature Review  

Various articles proposed for IoT channel estimation. 

In [46], a new model of joint activity identification and IoT 

networks channel estimation have been performed by 

considering phase transfer with calculation and evaluation. 

The convergence rate obtained based on smoothing 

parameter, signature sequence length and also estimation 

accuracy, Yield between estimation accuracy and 

computational cost. In [47] Improved low-complexity 

channel estimation algorithms based on DFT method for 

LTE-based narrowband IoT systems. In this paper, low-

amplitude channel estimation algorithms with the help of 

NDMRS called Random Least Squares Sorting (RS-LS) and 

Low Noise are proposed. Another optimal estimator 

derived from the filtered channel estimation called Linear 

Minimum Means Squares Error Approximation (LMMSE-

A) has also been studied. 

In [48]a new model of channel estimation based on 

pilot length proposed for wide IoT systems in MIMO model. 

This paper developed simple algorithms for estimating the 

optimal pilot length that can support most IoT devices 

simultaneously. In [49] channel estimation and PAPR 

analysis of high-bandwidth IoT systems have been 

performed. In this paper, the authors presented two 

auxiliary channel estimation algorithms for NDMRS using 

LS and MMSE estimation methods. The evaluation results 

confirm that the formation of RRC pulses with low PAPR 

values is practical for the design of a narrowband IoT link 

transmitter and increases energy efficiency. In [50] 

presented a blind-channel estimate of the redistribution of 

collaborative communications in IoT systems. The authors 

proposd a batch-channel estimation method for IoT relay 

collaboration that can model a fitness function a modify 

RCA error function term and adopts the IRLS algorithm to 

solve the optimization problem. 

In [51] the estimation and evolving of the link channel 

in the narrowband IoT system has been done. In this paper, 

channel estimation and equality as well as noise variance 

estimation in narrowband IoT system are specialized. 

Various narrowband IoT techniques such as LS and 

LMMSE for channel estimation and Zero Forcing (ZF) and 

MMSE for equalization have been studied. It has been 

shown that the low complexity of MMSE-based methods in 

the narrowband IoT is possible with the use of a small 

number of sub-carriers. In addition, noise variance 

estimation is proposed based on a combination of two 

consecutive observations of the pilot, assuming a slow 

channel change. The authors also demonstrate that the 

proposed estimator is efficient, and by simulation confirm 

that both the LMMSE channel estimator and the MMSE 

equalizer can use the estimated noise variance instead of 

the exact value without loss of performance. In [52], the 

analysis and comparison of the connection level and the 

estimation of the performance of channel models for 

wireless communication in the IoT has been studied. NLOS 

was used in this study. In [53]presented a possible blind 

source isolation with an application for channel estimation 

and multi-node identification in MIMO green and 

multimedia communication systems. This research 

presented the improvement of accuracy, robustness and 

computational load of Blind Source Separation (BSS) and 

its application in estimating blind MIMO IoT interference 

channel, multi-node IoT data detection, separation and 

identification in OFDM-based MIMO IoT network. The 

superiority of possible corrections in BSS to its model, 

AMUSE and SOBI as well-known second-order techniques, 

has been evaluated and clarified through experiments 

performed on MIMO IoT networks of various 

combinations. In [54]provided channel estimation for 5G 

cellular IoT and fast-fading channels. LTE Cat-M1 (eMTC) 

is a 5G standard optimized for low power consumption and 

excellent coverage. The authors are building a modem for 

the Cat-M1 standard. One of the main components of the 

IoT Cat-M1 modem is its channel estimation block. 

In [55] deep learning is used for channels 

synchronization and estimation in the random-access 

channel of narrowband IoT. The authors performed very 

well in estimating Time of Arrival (ToA), Carrier-Frequency 

Offset (CFO), channel amplification, and frequency of 

collisions from the received transmission mixture. In 

[56]provided multiple non-OFDM access with channel 

estimation errors for linking IoT applications. One of the 

basic requirements for next generation wireless or mobile 

communication systems is the efficient support of a large 

number of connections for IoT applications, and Non-

Orthogonal Multiple Access (NOMA) plans can be used for 

this purpose. In this paper, the authors hypothesize that 

they use QPSK modulation and link NOMA schemes to 
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channel estimation errors. In this paper, the authors 

propose a high-link NOMA scheme that can reduce 

performance degradation due to channel estimation errors. 

Due to using Spiking Neural Network (SNN) in this 

article, we must reference to [57] too. In some recent and 

newer methods such as [58], channel estimation method 

proposed for high rate IoT in MIMO mode which use 

combination of two algorithms named Recursive Least 

Squares (RLS) as first tracker and the Interacting Multiple-

Mode (IMM) as second tracker for channel estimation. The 

optimum rate in channel estimation obtained in 

simulation. Also, in [59], Convolutional Neural Networks 

applied to Industrial Internet of Things (IIoT) to extend 

data management, computational complexity and 

workflows in scheduling, and geographical localization 

accuracy to reduce energy consumption. These proposes 

can minimize resource requirements in IIoT, but if this 

network deploy in wide range, it needs edge computing for 

minimize any resource allocation and requirements. 

 

3. Proposed Method  
The first step is that we should notice that our 

systematic model is based on. Providing a narrowband IoT 

structure and determine its channels is based on OFDM 

need to options deployment, physical channels and signals, 

link frame structure, and resource unit definition. The 

signal channel and derivative channel abnormalities are 

then investigated, and a NDMRS is generated to give a 

mapping to the time frequency network. The two LS and 

MMES estimation algorithms are then used in the EKF 

developed with Deep Learning to estimate the channel 

using NDMRS to determine the complex channel 

conditions of OFDM-based narrowband IoT systems. Two 

LS and MMSE algorithms are used for random sorting in 

the efficient conversion range, and to develop their 

structure, including occupying additional frequency band 

resources and increasing the computational complexity 

significantly, use the EKF with deep learning. Then, the 

LMMSE approximation is used to reduce computational 

complexity. Finally, the signal processing of the OFDM-

based narrowband IoT connector receiver signal is checked. 

In this section, the channel estimation for the entire time 

frequency network is calculated using the dimensional 

linear interpolation of the channel estimation time in a sub-

frame of a source unit. Then, the mismatch between the 

radio frequency baseband processing and the sampling rate 

between the transmitter of the OFDM-based narrowband 

IoT transmitter and the LTE base station receiver are 

considered to equalize the frequency domain channel. In 

this section, the PAPR rate is measured in order to connect 

the narrowband IoT network based on OFDM. By 

determining the BER and the SNR and MSE along with 

energy determination and PAPR, as well as quality of 

services measures including throughput and delay, will be 

the evaluation and measurement criteria in channel 

estimation. Table (1), represented used parameters in this 

study to create model. Any parameters noticed and 

described in Table (1) used in equations and we placed them 

in the form of a table to avoid redundancy of the 

description.
Table 1. Main parameters of proposed model  

Mathematic Symbols Description 

𝜉 = (𝛪 ∪ {𝐴}. 𝐸) Network graph 

𝛪 𝑛 data provider set 

𝐴 Data submitter (transmission) 

𝐸 Network communication set 

𝑇𝑒 Measurement number for 𝑒 iteration 

𝑟𝑖,𝑒,𝑡 𝑖 raw data record in 𝑒 iteration 

𝑅𝑖,𝑒 𝑖 raw data provider in 𝑒 iteration 

ℛ Raw data domain 

𝛼 Cumulative function 

𝑓𝑠:ℛ𝑇𝑒 → 𝑆𝑇𝑒  Summarizer function 

𝑠𝑖,𝑒,𝑡 Data record summarizer 

𝑆𝑖,𝑒 𝑖 summarizer date in e iteration 

𝑆 Summarizer domain data 

𝜖𝑒,𝑡 𝑒 local error in iteration and 𝑡 time 

𝜀𝑒,𝑡 𝑒 global error in iteration and 𝑡 time 

𝐺 ∁ 𝛪 Data groups 

𝑚 Data groups numbers 

𝑎𝑒,𝑡
𝐺  Internal data integration groups 
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𝑎, 𝑎1, 𝑎2 Data supplier (transmitter and receiver) 

𝜖𝑒,𝑡
𝐺  Local group error for 𝐺 group 

𝜀𝑒,𝑡
𝐺  Total group error for 𝐺 group 

 

At first, the data in channels and channel state must be 

modeled. Hence, the local error is in the form of Eq (1) at 

the narrowband IoT. 

𝜖𝑒,𝑡 =
1

𝑛
∑ 𝜖𝑖,𝑒,𝑡 =

|𝑟𝑖,𝑒,𝑡 − 𝑠𝑖,𝑒,𝑡|

|𝑟𝑖,𝑒,𝑡| + |𝑠𝑖,𝑒,𝑡|

𝑛

𝑖=1

 (1) 

In Eq (1), any parts are different between raw data and 

summary in the provider 𝑖 (transmitter or receiver of data). 

A higher-level local error in channel recognition obtains 

better security and confidentiality. It is noteworthy that 

local error cannot depend on cumulative function. The 

confidentiality precision of data in recognizing channels is 

calculated by general error which is in accordance with Eq 

(2). 

𝜀𝑒,𝑡 =
|𝛼(𝑅𝑒,𝑡) − 𝛼(𝑆𝑒,𝑡)|

|𝛼(𝑅𝑒,𝑡)| + |𝛼(𝑆𝑒,𝑡)|
 (2) 

Based on literatures, the data confidentiality is 

possible under the Eq (1) and (2) conditions which is the 

average difference between raw data 𝑅𝑒,𝑡 = (𝑟𝑖,𝑒,𝑡)𝑖=1
𝑛

 and 

the summarized data𝑆𝑒,𝑡 = (𝑠𝑖,𝑒,𝑡)𝑖=1
𝑛

. The higher overall 

error and lower response will be maintaining the data 

confidentiality in communicating and channel state. To 

maintain the data confidentiality in devices connectivity, 

they must compute a cumulative distribution function 

between raw data and cumulative data, which is called a 

local group error as Eq (3). 

𝜖𝑒,𝑡
𝐺 =

|𝑟𝑖,𝑒,𝑡 − 𝑎𝑒,𝑡
𝐺 |

|𝑟𝑖,𝑒,𝑡| + |𝑎𝑒,𝑡
𝐺 |
, 𝑖 ∈ 𝐺 (3) 

Similarly, the cumulative distribution function must 

be computed between aggregated data and cumulative 

data, which is called the sum of the group error as Eq (4). 

𝜀𝑒,𝑡
𝐺 =∑

|𝑠𝑖,𝑒,𝑡 − 𝑎𝑒,𝑡
𝐺 |

|𝑠𝑖,𝑒,𝑡| + |𝑎𝑒,𝑡
𝐺 |

𝑖∈𝐺

 (4) 

The calculation of the throughput in the channel 

estimatin is given by the Eq (5), the delay calculation is in 

the form of the Eq (6), and the bit error rate calculation is 

in the form Eq (7). 

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 = 𝑀𝑎𝑥𝑊𝑖𝑛𝑑𝑜𝑤𝑆𝑖𝑧𝑒
𝑓𝑤(𝑡+1) × 𝐷𝑒𝑙𝑎𝑦𝑓𝑤(𝑡+1) 

× 𝑅𝑇𝑇𝑁𝑑𝑎𝑡𝑎 
(5) 

𝐿𝑎𝑡𝑒𝑛𝑐𝑦𝐷(𝑛) =

(

 
 
 
 
 

1

(
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𝑡𝑎𝑛2
𝜃
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)

2
𝑓𝑤(𝑡+1)

√𝑎(𝑁𝑑𝑎𝑡𝑎)

)

 
 
 
 
 

 (6) 

𝐵𝐸𝑅 = 1 − (1 − 𝐵𝑒)
𝑁𝑑𝑎𝑡𝑎 

= 1 − 𝑒𝑁𝑑𝑎𝑡𝑎𝑙𝑜𝑔(1−𝐵𝑒) + 𝑓𝑤(𝑡 + 1) 
(7) 

In Eq (5), 𝑀𝑎𝑥𝑊𝑖𝑛𝑑𝑜𝑤𝑆𝑖𝑧𝑒 is the maximum window size 

in the evaluation of transmitting and receiving data, which 

can be calculated after calculating the delay in Eq (6). 𝑅𝑇𝑇 

Is the time it takes to send data in sweep along the way in 

the IoT. It is worth noting that the calculation of latency has 

been done end-to-end. In the SNR as a quantitative and 

qualitative measure in the context of the IoT as a quality of 

services issue, there is an important problem. A value below 

12 indicates a serious noise problem in the data. A value 

above 20 is a satisfactory state and a value greater than 30 

is the appropriate amount. In fact, the higher the index, the 

better, is a better signal in the original data. The SNR is 

defined as the signal strength rate to the noise power ratio, 

which is according to Eq (8). 

𝑆𝑁𝑅 =
𝑃𝑠𝑖𝑔𝑛𝑎𝑙

𝑃𝑛𝑜𝑖𝑠𝑒
 (8) 

P is the mean value of the signal strength. Due to the 

fact that most signals have a dynamic range, they are 

logarithmically denoted by dB, which is given by Eq (9) for 

the power signal and Eq (10) for the noise signal. 

𝑃𝑠𝑖𝑔𝑛𝑎𝑙,𝑑𝐵 = 10𝑙𝑜𝑔10(𝑃𝑠𝑖𝑔𝑛𝑎𝑙) (9) 

𝑃𝑛𝑜𝑖𝑠𝑒,𝑑𝐵 = 10𝑙𝑜𝑔10(𝑃𝑛𝑜𝑖𝑠𝑒) (10) 

Up to here, we discussed about EKF in channel 

measurement and calculation with recognizing. Now, we 

use Spiking Neural Network as deep learning model in it. 

Spiking neural networks or SNNs are inspired by 

information processing in biology, where scattered and 

asynchronous binary signals communicate and process in 

parallel. SNNs in neuromorphic hardware show desirable 

properties such as low power consumption, fast inference, 

and event-based information processing. This makes them 

interesting candidates for efficient implementation of deep 

neural networks, the method of choice for many machines 

learning tasks. A wide range of training methods are 
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provided for SNNs, which includes the conversion of 

conventional deep networks to SNNs, limited pre-

conversion training, and diverse biological motivations. 

The purpose of the study is to define the SNN training 

methods and to summarize their advantages and 

disadvantages. The relationship between SNNs and binary 

networks is also discussing at the rest of this article. 

Neuromorphic hardware operating systems have great 

capabilities for activating deep networks in real-world 

applications. Neuromorphic approaches and conventional 

machine learning should not be considered as just two 

solutions to the same problem classes, but instead can 

identify and exploit the specific benefits of their task. 

Spiking deep learning offers good opportunities to work 

with new types of event-based sensors, abuse of time codes 

and local learning on the chip [57]. 

In this study, only feed-forward networks are 

considered that calculate mapping from input to output. 

Spiking neural networks were initially studied as biological 

information processing models in which neurons exchange 

information through spikes. It is assumed that all spikes are 

stereotypical events, and as a result, information 

processing is reduced to two factors: first, the timing of 

spikes, for example, movement frequencies, and the 

relative timing of pre- and post-synapse spikes. Second, the 

identification of the synapses used means which nerve cells 

are connected, whether the synapse is stimulating or 

inhibitory, synaptic power and short-term plasticity, or 

modifying effects are possible. Both neurons are the point 

at which input spikes instantly alter their membrane 

(physical) potentials or model as multi-chamber models 

with complex spatial (dendritic) structures depending on 

the level of detail of the simulation neurons. So that 

dendritic currents can interact before that. Physical 

potential also has been modified. Different models of spike 

neurons, such as integrating and fire, spiking response or 

Hodgkin- Huxley model, describe the evolution of 

membrane potential and spike production at different 

levels of details. Typically, the membrane potential of the 

stream merges with the entry of the spikes, creating a new 

spike each time the threshold is crossed. After the spike is 

created, through the axon to all the nerve cells connected 

with the delay, the small axon is sent and the membrane 

potential is adjusted to a certain base. Fig.1. shows this. 

 

 

Fig. 1. SNN main structure and mechanism [57] 

Direct communication between analog and spiking 

neural networks is established by considering the activation 

of an analog neuron as equivalent to the rate of firing of a 

spike neuron, assuming a stable state. Many neurometric 

models have used such rate codes to explain computational 

processes in the brain. However, spike neural models can 

also model more complex processes that depend on the 

relative timing between spikes or the timing of some 

reference signals, such as network fluctuations. Temporary 
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codes are of great importance in biology, and even a spike 

or small changes in the time it takes to shoot a neuron can 

cause a variety of reactions, because most decisions must 

be calculated before a reliable spike estimation [57]. In 

addition to the biological definition of SNNs, they have a 

pragmatic functional representation that in the field of 

neural engineering, SNNs are commonly referred to as 

spikes and are event-based. Here, an event is a collection of 

digital information that is determined by the origin and 

destination address of a time marker. Unlike biologically 

motivated SNNs, it may have several bits of load 

information. The source of this protocol is the address 

index or AER protocol, which is used to connect to event-

based sensors via digital connection to neural chips or 

digital hardware after processing. Event-based visual 

sensors use the loading bit to differentiate between silent 

and on visual events, but the loading bit can also be used to 

send other types of information related to post-synapse 

targets such as Integrated and Fire. The motivation for 

studying SNNs is that the brains indicate significant 

cognitive function in real-world tasks. With successive 

efforts to improve our understanding of brain-like 

calculations, it is expected that models that are closer to 

biology will also be closer to natural intelligence than more 

abstract models, or at least more efficient computationally 

[57]. 

SNNs are ideally suited for processing space-time 

information from neuro-sensors that are themselves energy 

efficient. Sensors capture accurate information about the 

environment, and SNNs can use efficient time codes in their 

calculations. This information processing is also event 

focus, meaning that whenever a small amount of 

information is not recorded in the SNN, it does not 

calculate much, but when a sudden explosion of activity is 

recorded, the SSN creates more spikes. Assuming that 

information is usually scattered from the outside world, 

this leads to a very effective way of calculating. In addition, 

the use of time domain input is another valuable piece of 

information compared to framework-based approaches, 

where an artificial timeline entered by the sensor is 

introduced. This can lead to efficient calculation of features 

such as optical flow or stereo inequality, and in 

combination with spike-sensitive learning rules, can lead to 

more efficient data training. 

In deep SNNs, asynchronous axis-based computing 

mode results in the rapid dissemination of prominent 

information through multiple network layers. To take 

advantage of this effect in practice, SNNs must be run on 

neuromorphic hardware. In combination with an event-

based sensor, this processes quasi-simultaneous data 

processing, meaning that the first approximate output of 

the final layer is available immediately after the first input 

spikes are recorded. This is true even for multi-layered 

networks, because as soon as the bottom layer provides 

sufficient activity, the spikes immediately spread to the 

higher layers. It does not to wait for the full input sequence 

to complete, which is unlike convolutional deep neural 

networks, where all the layers need to be fully charged 

before the final output can be calculated. The primary 

output spikes are necessarily based on incomplete 

information, so it has been shown that deep SNNs improve 

their performance and improve the processing time of the 

spike more than their input. SNNs can also be trained 

specifically to reduce approximate inference delays. SNNs 

are the preferred computational model for the operation of 

highly efficient energy-efficient neuromorphic hardware 

devices that support data-driven processing mode and keep 

computations local, thereby preventing access to expensive 

memory [57]. 

Despite recent advances one of the main challenges 

and disadvantages of deep SNNs is that their accuracy in 

standard metrics such as MNIST, CIFAR, or ImageNet is 

not as good as that of their machine learning counterparts. 

To some extent, this can be attributed to the nature of these 

benchmarks, which are present in conventional frame-

based images. Therefore, a kind of image conversion to the 

Spark sequence is required, which is usually inefficient. 

Another limiting factor is the lack of training algorithms 

that take special advantage of the features of Spark 

neurons, such as efficient time codes. Instead, most 

approaches use approximations based on the rate of use of 

convolutional deep learning neural networks, meaning that 

no progress can be expected. Deep SNNs may be useful in 

such cases, as the results may be faster and more optimized 

and it can get more efficiency than convolutional neural 

networks, especially if SNN runs on parallel hardware. 

Training algorithms for SNNs are also more difficult to 

design and analyze, because of their non-computational 

and discontinuous computational methods, which makes 

direct use of successful techniques behind the scenes, as 

well as for deep neural networks can be difficult [57]. 

The performance of SNNs in conventional AI 

standards should only be seen as a proof of concept, but not 

as the ultimate goal of research. If SNNs imitate, they 

should be expected to be optimized for behavioral-related 

tasks such as decision-making based on continuous input 

flow when moving in the real world. Image classification is 

a random image that is suddenly overlooked on the retina 

without any background support. While brains are able to 

solve such things, they are certainly not optimal for it. 

Currently, the Internet environment lacks a set of good 
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metrics and evaluation metrics that can measure effective 

performance in the real world [57]. 

 

4. Simulation and Results  
MATLAB used as simulation platform to implement 

the proposed approach. Due to simplicity of coding in 

MATLAB, it used instead of powerful simulation tools such 

as NS-3, NS-2, OPNet, OMNet++, GloMoSIM, JSIM, 

IoTSIM and so on. Also some evaluation criteria used to 

guarantee the proposed approach and comparison to other 

methods. Initial structure for narrowband IoT is necessary 

in simulation. It is essential to provide a basic dimension to 

the narrowband IoT. Defining parameters in simulation 

worlds is too important to examine the proposed approach 

and results in a concrete manner in order to obtain 

assumptions and goals from it. In the simulation world, 

defining the dimensions of a grid means that it will not be 

covered outside of it, but in the real world, using the tools 

and the equipment, the uncovered points can be partly 

close to the coverage range. The Table (2), shows the initial 

values for the general settings of the narrowband IoT, 

including the number of sensor nodes (which includes 

equipment such as Bluetooth, etc. for communication with 

the narrowband IoT), sampling rate, primary energy, 

network dimensions, etc. and adjusts their initial 

parameters with empirical visibility.
Table 2. Initial settings of narrowband IoT network 

100 × 100 m2 X and Y dimension supported in narrowband area 

300 nodes Sensor nodes number in narrowband 

100 packages Package number in narrowband to transmit 

100 MB Maximum size of packages in narrowband to transmit 

1 KB Minimum size of packages in narrowband to transmit 

8 seconds Sampling time in seconds 

5 dB Initial SNR in transmitting and receiving data 

20 – 20 dB SNR range based on drop in transmitting and receiving data 

Random Nodes deployment in narrowband environment 

BPSK Modulation for transmitting and receiving data 

0.1 Z-WAVE initial threshold in fault tolerance time 

1 Joule Energy of each nodes 

300 nodes  × 1 Joule = 300 Joule Total energy of narrowband 

100000 Symbol numbers 

256 Sub-carriers numbers 

32 Channel estimation period length 

4 MHz Pilot frequency 

5 Time steps for channel estimation 

100 MHz Channel frequency 

 

Probability of detection and channel estimation 

considered in narrowband IoT-OFDM which presented in 

Fig. 2. 
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Fig. 2. Probability of detection output for channel estimation of 

narrowband IoT-OFDM 

According to Fig. 2, it is clear that the proposed 

approach EKF-DL has a better probability of detection 

capability than Z-WAVE protocol in the channel 

estimation. The highest probability of detection is the 

superiority criterion. The proposed method has added 

more capabilities to the Z-WAVE protocol to maintain the 

channel estimation at the time of their probability of 

detection. Also Probability of Miss Detection (PMD) in 

channel estimation consider (which could be due to the 

existence of severe noise and interruption in the 

narrowband IoT-OFDM) which can be affect in data loss 

rate and preventing its data over fitting in channel. The 

lower probability of miss detection can be guaranteed to 

improve the loss data rate. Fig. 3. Represented the 

probability of miss detection. 

 
Fig. 3. Probability of miss detection 

It is shown in Fig. 3. That the proposed approach EKF-

DL has the better probability of miss detection than the Z-

WAVE protocol in the channel estimation of narrowband 

IoT-OFDM. The result of this section represented that the 

proposed EKF-DL method has a functional superiority in 

minimizing the probability of miss detection. This can 

certainly prove to be as low as possible to reduce the data 

loss rate in transmitting them from origin to destination in 

the context of the narrowband IoT-OFDM. Fig. 4. 

Represented the data loss rate. 

 
Fig. 4. Data lose rate 

Based on Fig. 4 and the previous description, the 

proposed approach EKF-DL has equal data loss rate with 

the classical gateway model, but Z-WAVE is lower than 

that. It should be noted that the data loss rate in the Z-

WAVE communication protocol is desirable, but may be 

different at the time of channel estimation in this study with 

8 bits of information in the BPSK modulation-based 

communication channels. It should be assumed that the 

upcoming chart proves this. In the following, after creating 

a safe environment, quality of services criteria to evaluation 

consider. Initially, it is considered that the delay in Fig. 5., 

which shows the delay after applying the proposed 

approach for the secure gateway on the narrowband IoT-

OFDM compared to the Z-WAVE protocol and the classic 

gateway. 

 

Fig. 5. Delay of proposed approach in comparison to others 
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In Fig. 5, the delay diagram of the proposed red-color 

scheme is characterized by a lower delay rate than the 

previous two methods including the Z-WAVE and the 

classical gateway in the same conditions. In the following, 

examination of the amount of data transmitted in bits 

considered. If the environment is in stable channel 

estimation mode, the data is decoded by the receiver and in 

the transmitter part, encrypted. The results of the 

throughput in the narrowband IoT-OFDM shown in Fig. 6. 

 

Fig. 6. Throughput rate for proposed approach in comparison to others 

According to Fig. 6. Which is compared with the Z-

WAVE, the classic model and the use of the AES algorithm, 

it is shown that the green graph has a higher permeability 

rate than the other methods. But over time, this rate is 

declining and is roughly the same in other ways. Fig. 7. 

Shows the proposed ROC approach in comparison to Z-

WAVE, the classic model and the use of the AES algorithm. 

 

Fig. 7. Proposed method ROC curve in comparison to other methods 

Based on Fig. 7, represented that proposed method has 

better ROC curve in comparison to others. Now the main 

operation of channel estimation will be done with the 

proposed method. The first important part is the BER (bit 

error rate), which is compared with EKF and LS-MMSE 

methods. Its output is as shown in Fig. 8. 

 

Fig. 8. Proposed method BER 

Fig. 8, represented that the BER of the proposed 

method EKF-DL has a functional advantage over LS-MMSE 

and EKF. It should be noted, however, that the EKF method 

has a relatively close result to the EKF-DL. Then it is 

necessary to determine the MSE (mean square error) s 

between these methods, the output is as shown in Fig. 9.  

 

Fig. 9. Proposed method MSE 

Based on Fig. 9, it is clear that the proposed EKF-DL 

method has a better performance in terms of SNR (signal-

to-noise-ratio) in dB terms in terms of MSE than the LS-

MMSE method and then EKF. The overall results represent 

that the proposed approach presented in this study has the 
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ability to estimate the channel in the narrowband IoT-

based MIMO/OFDM. 

 

5. Conclusion  
Internet of Things (IoT) in narrowband mode need to 

perform channel estimation due to modulation-based 

multi-channel systems conditions. So, this article surveyed 

about this topic to improve computational complexity and 

quality of service criteria such as Bit Error Rate (BER), 

Signal to Noise Ratio (SNR) and Maximum to Average 

Power Ratio (PAPR). We used OFDM as modulation and 

due to its weaknesses in latency, we developed it with 

intelligent methods based on Extended Kalman Filter 

(EKF) with combination of Deep Learning. Also we 

compared our results with classical methods of channel 

estimation such as Least Squares (LS) and Linear 

Minimum Mean Square Error which we obtained better 

results in computational complexity and quality of service 

criteria. Also we compared our results with some protocol 

such as Z-WAVE and AES that we gained better results, too. 

It should be noted that the advantages of the proposed 

channel estimation in IoT narrowband is to optimize 

probability of detection, probability of miss detection and 

data loss as security parts in channel estimation. Also we 

measure some quality of services criteria such as delay, 

throughput, SNR and BER. Also we tested the energy of this 

method in IoT narrowband channel estimation. It is 

noteworthy to notice that every parameter we described 

represented in simulation and obtained results indicated 

the optimal condition for any of them. 
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