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Highlights 
 

 Novel hybrid radial basis function (RBFNN) networks were developed 
 Two optimization algorithms named ant-lion optimization (ALO) and biogeography optimization (BBO) applied to RBFNN 
 BBO-RBFNN and ALO-RBFNN were suggested for predicting the fresh and hardened properties of self-compacting concrete 
 L-box test, V-funnel test, and slump flow in the fresh phase of concrete, and compressive strength in the hardened phase 
 Regarding D flow, L-box, V-funnel, and CS, the results of ALO-RBFNN were better than BBO-RBFNN and literature. 

 
 

Article Info  Abstract 

It is observed from the published literature that there were so limited studies concentrating on 
predicting both fresh and hardened properties of self-compacting concrete (SCC). Hence, it is 
tried to develop models for predicting the fresh and hardened properties of SCC by the optimized 
radial basis function neural network (RBFNN) method. The RBFNN method's key parameters 
are optimized using ant-lion optimization (ALO) and biogeography optimization (BBO) 
algorithms. The considered properties of SCC in the fresh phase are the L-box test, V-funnel test, 
slump flow, and compressive strength (CS) in the hardened phase. Results demonstrate powerful 
potential in the learning section as well as approximating in the testing phase. It means that the 
correlation between observed and predicted properties of SCC from hybrid models is acceptable 
so that it represents high accuracy in the training and approximating process. Regarding D flow, 
L-box, V-funnel, and CS, the results of ALO-RBFNN were better than BBO-RBFNN and 
literature. Overall, the RBFNN model developed by ALO outperforms others, which depicts the 
capability of the ALO algorithm for determining the optimal parameters of the considered 
method.  
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Nomenclature 

𝐴𝐿𝑂  Ant lion optimizer 𝐹𝐴  Fly ash 

𝐵  Dosage of binder content 𝐿𝐵  L-box 

𝐵𝐵𝑂  Biogeography-based optimization 𝑅𝐵𝐹𝑁𝑁  Radial basis function neural network 

𝐶𝐴𝐺  Coarse aggregate 𝑆𝐶𝐶  Self-compacting concrete 

𝐶𝑆  Compressive strength 𝑆𝑃   Superplasticizer 

𝐷𝐹  D flow 𝑉𝐹  V-funnel 

𝐹𝐴𝐺  Fine aggregate 𝑊/𝐵  Water to powder ratio 

 

1. Introduction 
In 1988, in Japan, self-compacting concrete (SCC) was 

first extended. These days, SCC is a very effective concrete 

blend worldwide [1]–[6]. SCC is a kind of concrete that is 

able to load and flow the formatting with no exterior power. 
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As well, it can strengthen by weight of its own [7]. The 

design mix initially focused on the two original criteria, 

with the need for the big value of better particle and urgency 

of high-performing water decreasing mixture. Compared to 

different common concrete, it needs comparatively minor 
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human attempts that are an added benefit. As well, it 

increments output level and decreases noise disorders. 

Many explore studies are being performed in the SCC 

technology zone; several of these explores suggest finer 

increment and continuity. Alongside of all these benefits, 

SCC has several minus parts. The expense of output of SCC 

is able to be 2-3 chances bigger than normal concrete. 

Hence, to lower the expense, several various mixtures like 

metakaolin, fly ash (FA), limestone filler, ground-

granulated blast-furnace slag, and ground clay bricks can 

be used [8]. These components utilized actions as a suitable 

replacement for Portland cement [9]–[14]. To extend SCC, 

three criteria must be carried out, like filling capability, 

passing capability, and separation resistance. Then, to meet 

out these needs, some test experiments are required to be 

carried out. Many questions occur that SCC is affordable 

and expense-effective. 

Nowadays, the successful applications of the artificial 

neural network in different civil engineering fields have 

been reported adapted from experimental results [15]–

[18]. This usage is widely-expanded in the concrete 

industry to predict different properties of concrete. Oxcan 

et al. [19] carried out comparative research considering two 

methods, with ANN and fuzzy logic, to predict the 

compressive strength of silica fume concrete. For analogous 

usages, several of the different scholars as well as suggested 

appropriate samples inspired by Fuzzy and adaptive neuro-

fuzzy inference system (ANFIS) to compute the 

compressive strength [20]–[23]. Newly, Sonebi et al. [24] 

studied the new attributes of SCC utilizing SVR proceed. 

The outcome was affirmative and incentive that presents 

finer filling and passing capability. Various scholars 

performed analogous study work to forecast the 

compressive strength of concrete utilizing SVR [25]–[27]. 

Liu [28] considered the possibility of utilizing an SVM 

sample to specify autogenous shrinkage of concrete 

admixtures. Reciprocally, Yang [29] conducted empirical 

research on corroded reinforced concrete. Other papers are 

also developed different models to predict the properties of 

SCC, such as the ANN technique [20], M5' and MARS based 

prediction models [30], and support vector regression 

approach [31] for predicting the slump flow, the L-box 

ratio, the V-funnel time and the compressive strength.  

According to the aim of this study about using radial 

basis function neural network (RBFNN) as well as newly 

developed optimization algorithms, it is worth discussing 

this object [32]–[36]. The CS of SCC containing FA was 

predicted using hybrid biogeography-based optimization 

(BBO) with fuzzy RBFNN [37], [38]. The results strongly 

presented that the developed hybrid model has the 

acceptable performance to predict the CS of SCC with FA 

[39]. Another study focused on predicting the CS of SCC 

containing Class F FA using a hybrid RBFNN and firefly 

optimization algorithm (FOA) hybrid model. The results 

depict that the CS predicted by the proposed models have 

appropriate performance compared to the experimental 

results [40]. 

Nevertheless, most of the literature on concrete was 

restricted just to forecasting the hardened concrete 

characteristics. It is received from the published articles 

that there were so limited studies concentrating on 

predicting either fresh or hardened properties of self-

compacting concrete (SCC) using the optimized RBFNN 

method. Hence, it is tried to develop models for predicting 

the fresh and hardened properties of SCC by the RBFNN 

method. The RBFNN method has key parameters that can 

be optimized with optimization algorithms, where this 

study aimed to determine them using ant-lion optimization 

(ALO) and biogeography optimization (BBO) algorithms. 

Experimental data records were gathered from published 

literature to develop the ALO-RBFNN and BBO-RBFNN 

models. The considered properties of SCC in the fresh 

phase are the L-box test, V-funnel test, slump flow, and 

compressive strength in the hardened phase. 

2. Materials and methods 
2.1. Data description 

This study aimed to develop models to predict the 

resulting variables related to self-compacting concrete's 

fresh and hardened properties (SCC). Most of the published 

literature has been working with a limitation of assessing a 

single output property of concrete by using many input 

datasets. Hence, in the present study, four output 

properties of SCC named D flow, L-box, V-funnel, and 

compressive strength are considered to use in the 

prediction process. To this aim, a dataset has been made by 

collecting 114 SCC samples from published literature [41]–

[53]. The input variables contain components of concrete: 

binder content (B), fly ash percentage (FA), water to binder 

ratio (W/B), fine aggregate (FAG), coarse aggregate (CAG), 

and superplasticizer dosage (SP). In this study, the dataset 

was divided at 70% for training data and the rest (30) for 

the testing phase [54]. Statistical parameters of the dataset 

and their histogram plots are presented in Table1 and Fig. 

1.  

 

 

 

 

 

 

 



 

Table 1. Statistical parameters of input and output variable 

Category Parameter 
Input variable Output variable 

B FA W/B FAG CAG SP DF LB VF CS 

Train 

Min. 370 0.0 0.26 656 590 0.74 510 0.6 2 23 

Max. 733 60 0.45 1010 935 21.84 810 1.0 19.2 86.8 

St. D. 73.4506 15.74 0.061 92.54 120.486 4.703 53.321 0.084 4.047 17.408 

Var. 5394.99 247.67 0.004 8563.65 14517.02 22.12 2843.14 0.007 16.378 303.07 

Range 363 60 0.19 354 345 21.1 300 0.4 17.2 63.8 

Skew. 0.0869 -0.288 -0.406 -0.272 -0.0644 0.677 -0.0457 -0.52 0.493 0.4955 

Kurt. 0.4472 -0.575 -1.059 -1.1257 -1.5461 0.494 0.3045 0.1314 -0.289 -0.908 

Test 

Min. 400 0.0 0.27 686 590 0.86 480 0.6 2.5 17 

Max. 628 60 0.45 1038 926 19.53 770 1 14.5 82.9 

St. D. 64.463 17.941 0.057 77.842 121.657 4.518 60.735 0.109 3.243 17.251 

Var. 4155.556 321.89 0.0033 6059.42 14800.36 20.411 3688.79 0.0120 10.5166 297.59 

Range 228 60 0.18 352 336 18.67 290 0.4 12 65.9 

Skew. -0.5276 0.3895 -0.626 -0.219 0.2066 0.496 -0.1246 -0.799 0.1133 0.454 

Kurt. -0.5108 -0.555 -1.055 -0.0220 -1.5411 0.2141 0.8255 0.1453 -1.1721 -0.526 
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Fig. 1. The histogram plots of the input and output variables 

 
2.2. Equality constraints 

ALO swarm-based optimization method was 

developed by mimicking the behavior of ant lions (AL) via 

their life [55]. Same as other methods, this method aims to 

specify the most accurate fitting solution for an issue during 

iterations. The first locations of the lions and the hunt are 

accidentally adjusted in the pursuit space. The ALO 

flowchart is presented in Fig. 2. Steps during each iteration 

are: random walk of prey, trapping in holes, constructing a 

trap, sliding the hunt, hunting the prey, and determining 

the elite.  

Based on Eq. 1, the movement of the brought-up ants 

is notified by cumulative sum (𝐶𝑠𝑢𝑚) [55]:  

𝑋(𝑡) = [0, 𝐶𝑠𝑢𝑚(2𝑟(𝑡1)) − 1,… , 𝐶𝑠𝑢𝑚(2𝑟(𝑡𝑛)) − 1]  (1) 

𝑟 (𝑡) = {
1, 𝑟𝑎𝑛𝑑(0, 1) > 0.5

0, 𝑟𝑎𝑛𝑑(0, 1) ≤ 0.5 
} (2) 

Where "rand" is a random number that is exactly 

divided from 0 to 1. After that, assuming 𝑋𝑖
𝑡 is the position 

of the 𝑖𝑡ℎ variable, a normalization function is applied at 

each iteration [55]: 

𝑋𝑖
𝑡 =

(𝑋𝑖
𝑡 − 𝑎𝑖). (𝑑𝑖

𝑡 − 𝑐𝑖
𝑡)

𝑏𝑖 − 𝑎𝑖
+ 𝑐𝑖

𝑡
 (3) 

𝑑𝑖
𝑡 : Maximum of the introduced variable 

𝑐𝑖
𝑡 : Minimum of the introduced variable 

𝑏𝑖 : Maximum of accidental walk in the 𝑖𝑡ℎ variable 

𝑎𝑖 : Minimum of accidental walk in the 𝑖𝑡ℎ variable 

Eqs. 4-5 show the mathematical effect of the holes of 

AL on the random hunt walk (Fig. 3a) [55]. 

𝑐𝑖
𝑡 = 𝐴𝑛𝑡𝑙𝑖𝑜𝑛𝑗

𝑡 + 𝑐𝑡  (4) 

𝑑𝑖
𝑡 = 𝐴𝑛𝑡𝑙𝑖𝑜𝑛𝑗

𝑡 + 𝑑𝑡 (5) 

𝐴𝑛𝑡𝑙𝑖𝑜𝑛𝑗
𝑡  : the location of 𝑗𝑡ℎ AL 

𝑑𝑡 : vectors with the maximum of variables 

𝑐𝑡 : vectors with the minimum of variables 

In the ALO method, it is assumed that one hunter traps 

each hunt. So, the performance of the prey assists to the lion 

hunting capability is a function of so-called Roulette Wheel 

Selection (RWS) is done herein. Considering this, the ant 



 

lions that have bigger fitness contain a larger chance to 

catch better prey. Parameter 𝐼 is supposed that rely on the 

present iteration and the number of iterations ratio. Eqs. 

(6-7) depicts the prey sliding to the trap mathematically 

(Fig. 3b). Executing this decline in the pursuit space 

contributes to obtaining a more suitable convergence into 

being optimized.

 
Fig. 2. The flowchart of the ALO algorithm 

 

 

Fig. 3. a) Random walk of the prey inside the trap, and b) hunting behavior of ant lions 

 

 

𝑐𝑡 =
𝑐𝑡

𝐼
 (6) 

𝑑𝑡 =
𝑑𝑡

𝐼
 (7) 

Finally, hunting the prey, also AL reposition, is 

determined as Eq. (8) [55]. 

𝑓(𝐴𝑛𝑡𝑖
𝑡) < 𝑓(𝐴𝑛𝑡𝑙𝑖𝑜𝑛𝑗

𝑡) → 𝐴𝑛𝑡𝑙𝑖𝑜𝑛𝑗
𝑡 = 𝐴𝑛𝑡𝑖

𝑡
 (8) 

After that, the clever ant lion is determined, as well the 

position of whole relations within the pursuit space is 

assumed to be affected by the position of clever number. A 

random walk of the hunt AL selection via the RWS is 



 

recognized by 𝑅𝐴
𝑡 , and the random walk of the same hunt 

close to the foremost hunter is 𝑅𝐸
𝑡  [55]:  

𝐴𝑛𝑡𝑖
𝑡 =

𝑅𝐴
𝑡 + 𝑅𝐸

𝑡

2
 (9) 

2.3. Biogeography-based optimization 
constraints 

BBO algorithm is a metaheuristic algorithm inspired 

by geographical distribution, emigration, and immigration 

of kinds within an ecosystem [56]. In this optimization 

algorithm, it is supposed which an ecosystem contains a 

limited number of habitats. Various parameters called 

suitability index variables impact each habitat quality for 

species, containing food, climate condition, water 

resources, etc. habitat suitability index (HSI) is an index to 

present the quality of each habitat. If a habitat is full or has 

a big HSI, the species tend to emigrate from this habitat and 

immigrate to the small value of HSI. Each living place 

supplied a feasible solution, and its SI is the decision 

variable (DVs). During the optimization process, the 

solutions with smaller values for objective have larger 

values of habitat suitability indexes. In this algorithm, two 

operators named "migration" and "mutation" are utilized, 

in which migration operator is applied to find the vicinity 

of the existing answers, and mutation one is used to explore 

the new answers and assist the exploration. 

For habitats with the size of HS, the habitats are listed 

from their cost function values. The suitability of the 𝑖𝑡ℎ 

habitat (𝐻𝑆𝐼𝑖) in the sorted generation is specified as Eq. 

(10) [56]. 

𝐻𝑆𝐼𝑖 = −𝑖 + 𝐻𝑆 + 1 (10) 

The emigration (µ𝑖) and immigration (𝜆𝑖) values are 

calculated as follows: 

𝜇𝑖 =
𝐻𝑆𝐼𝑖
𝐻𝑆

 (11) 

𝜆𝑖 = 1 −
𝐻𝑆𝐼𝑖
𝐻𝑆

 (12) 

The given Fig. 4 shows the migration process of the 

BBO. Here, the highest value of emigration and 

immigration speed is supposed to be 1. Migration from the 

𝑗𝑡ℎ decision variable of 𝑟𝑡ℎ habitat to the decision variable 

of 𝑖𝑡ℎ habitat is [56]: 

𝐷𝑉𝑗
𝑘 = 𝛼𝐷𝑉𝑗

𝑖 + (1 − 𝛼)𝐷𝑉𝑗
𝑟

 (13) 
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Fig. 4. Migration curve of the BBO algorithm 

2.4. Hybrid radial basis function neural network 

A radial base function neural network (RBFNN) is 

recognized as a feed-forward network containing one input, 

hidden, and output layer.  Hence, the convergence speed 

rate of an RBFNN is high [57]. The input nodes transition 

input variables from the input layer to the hidden layer, 

which a Gaussian activation function shapes the hidden 

layer nodes. This neural network reacts to the input signals 

close to the center of the base function. The resulted output 

of the hidden layer is transmitted to the output layer, which 

mainly employs a simple linear function [58]. 

Fig. 5 represent the structure of RBFNN, in which 
𝑡1, 𝑡2, … , 𝑡5 are the network inputs and 𝜑1, 𝜑2, … , 𝜑𝑞 are the 

center of the base function in the hidden layer. Also, 
𝑤0, 𝑤1, … , 𝑤𝑞 depicts the weights in which 𝑤0 represents the 

output layer weight. The Gaussian function (𝜑) used in this 

research is as Eq. (14) [57]: 

𝜑𝑖 = 𝑒𝑥𝑝 (−
‖𝑡 − 𝑐𝑖‖

𝜎𝑖
2 ) (14) 

𝜑𝑖 : Output of 𝑖𝑡ℎ node of hidden layer 

𝑐𝑖 : Prototype center of 𝑖𝑡ℎ  Gaussian function 

𝜎 : Spread rate parameter 

‖𝑡 − 𝑐𝑖‖ : Distance between input 𝑡 and 𝑐𝑖 

The output of an RBFNN could be presented via Eq. 

(15) [57]: 

𝑌 = 𝑊𝑇𝜑 =∑𝑤𝑖𝜑(

𝑞

𝑖=1

‖𝑡 − 𝑐𝑖‖) (15) 

The RBFNN is an adjustable technique that 

automatically dedicates the spread rate and the hidden 

layer's neuron number. Determining parameters in the 

efficiency of RBFNN defines the best combination of 

neuron numbers and spread rate. The integrated ALO-

RBFNN and BBO-RBFNN methods are applied to gain the 

most accurate RBFNN in the present study. The ALO and 



 

BBO algorithms determine the hidden neurons' number 

and the spread value to set the RBFNN structure. The 

highest allowable hidden neurons' number was equal to 

100. Therefore, ALO-RBFNN and BBO-RBFNN try to build 

a superior model with suitable values for the variables 

mentioned above.

 
Fig. 5. Radial basis function structure 

2.5. Performance evaluation indices 

Different statistical performance evaluators were 

applied to estimate the performance of developed hybrid 

models for forecasting the considered properties. To this 

aim, the Coefficient of determination (R2), root mean 

squared error (RMSE), and mean absolute error (MAE) 

were calculated as precision measurements (Eqs. (16-18)): 

𝑅2 =

(

 
∑ (𝑡𝑃 − 𝑡̅)(𝑦𝑃 − �̅�)
𝑃
𝑝=1

√[∑ (𝑡𝑃 − 𝑡̅)
2𝑃

𝑝=1 ][∑ (𝑦𝑃 − �̅�)
2𝑃

𝑝=1 ]
)

 

2

 (16) 

𝑅𝑀𝑆𝐸 = √
1

𝑃
∑(𝑦𝑝 − 𝑡𝑝)

2
𝑃

𝑝=1

 (17) 

𝑀𝐴𝐸 =
1

𝑃
∑|𝑦𝑝 − 𝑡𝑝|

𝑃

𝑝=1

 (18) 

Where, 𝑦𝑃, 𝑡𝑃, 𝑡̅, and �̅� represent the predicted values 

of the 𝑃𝑡ℎ pattern, the target values of the 𝑃𝑡ℎ pattern, the 

averages of the target values, and the averages of the 

predicted values, respectively.  

3. Results and discussion 
The results of the RBFNN models for predicting fresh 

and hardened properties of SCC are supplied as follows. As 

mentioned above, determining the main parameters in the 

efficiency of RBFNN is defining the best combination of 

neuron numbers and spread rate. The integrated ALO-

RBFNN and BBO-RBFNN methods are applied to gain the 

most accurate RBFNN in the present study. The optimized 

values of these determinative parameters for four 

properties of SCC (D flow, L-box, V-funnel, and CS) are 

presented in Table 2.

Table 2. Value of RBF parameters (continued). 

Properties RBF Parameters ALO-RBF BBO-RBF 

D flow 
Hidden neurons' number 98 83 

Spread value 2.6709 1.2504 

L-box 
Hidden neurons' number 98 96 

Spread value 3.91069 1.4098 

V-funnel 
Hidden neurons' number 99 74 

Spread value 3.8276 2.112 



 

Compressive strength 
Hidden neurons' number 93 81 

Spread value 1.439 1 

Fig. 6 demonstrates powerful potential in the learning 

section as well as approximating in the testing phase. 

Comparing the measurements with those predicted by 

developed models are supplied in Fig. 6 for ALO-RBFNN 

and BBO-RBFNN, related to fresh and hardened properties 

of SCC. It can be seen that the proposed models have R2 in 

acceptable value in the learning and testing phase. It means 

that the correlation between observed and predicted 

properties of SCC from hybrid models is acceptable so that 

it represents high accuracy in the training and 

approximating process.
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Fig. 6. Scatter plot between measured and predicted values 

 

Besides, the results of developed models considering 

R2, RMSE, and MAE values for fresh and hardened 

properties of SCC are supplied in Table 3. The results of the 

proposed models in this study have been compared with the 

published literature [31]. Regarding D flow, the results of 

ALO-RBFNN are so better than BBO-RBFNN as well as 

literature. For example, the RMSE value of the model by 

ALO in the training phase is 7.5154mm, while this value for 

the BBO-RBFNN model is more than twice, followed by 

Saha et al. (2020) at 11.67mm, and then Kaveh et al. (2018) 

by 36.29mm. Regarding L-box, the results of ALO-RBFNN 

are better than BBO-RBFNN as well as literature. For 

example, the RMSE value of the model by ALO in the 

testing phase is 0.0265, while this value for the BBO-

RBFNN model is roughly less than twice, and followed by 

Saha et al. (2020) at 0.025, and then Kaveh et al. (2018) by 

0.06. Turning to V-funnel results, the results of ALO-

RBFNN are extremely better than BBO-RBFNN as well as 

literature. For instance, 𝑅2 value of the model by ALO in the 

testing phase is 0.9951, while this value for the BBO-

RBFNN model is 0.9715, followed by Saha et al. (2020) at 

0.958, and then Kaveh et al. (2018) by 0.87. Finally, the 

result for CS also depicts the same outputs as above. 

Overall, the RBFNN model developed by ALO outperforms 

others, which depicts the capability of the ALO algorithm 

for determining the optimal parameters of the considered 

method. However, it is worth mentioning that the model 

developed with the BBO algorithm is also powerful.  

A justifiable fit between measured values and 

predicted values is acquirable from the time series figures 

reported in Figs—7 (a-d). As can be seen, for fresh and 

hardened properties of SCC in both optimized RBFNN 

(ALO-RBFNN and BBO-RBFNN) proposed models, the 

estimated values indicate suitable agreement with 



 

measured ones, expressing the workability of suggested 

integrated algorithms to forecast the D flow, L-box, V-

funnel, and CS with high precision. According to time series 

figures, developed models result in the lowest variation in 

the properties predicting process, providing roughly 

accurate predictions which can be used for practical 

applications.

Table 3. Statistical errors of proposed SVR models 

Properties Index Data phase ALO-RBFNN BBO-RBFNN [31] [30] 

D flow 

𝑅2 
Training data 0.9802 0.8769 

0.931 
0.57 

Testing data 0.9771 0.7609  

RMSE 
Training data 7.5154 18.7723 

11.678 
36.29 

Testing data 9.2382 29.94  

MAE 
Training data 2.7258 9.1572  27.66 

Testing data 3.5702 14.1120   

L-box 

𝑅2 
Training data 0.9484 0.9419 

0.91 
0.56 

Testing data 0.9442 0.8841  

RMSE 
Training data 0.0193 0.0204 

0.025 
0.06 

Testing data 0.0265 0.0375  

MAE 
Training data 0.0055 0.0063  0.05 

Testing data 0.0104 0.0152   

V-funnel 

𝑅2 
Training data 0.9987 0.9783 

0.958 
0.87 

Testing data 0.9951 0.9715  

RMSE 
Training data 0.146 0.6008 

0.723 
1.46 

Testing data 0.2268 0.5743  

MAE 
Training data 0.0422 0.2645  1.11 

Testing data 0.0880 0.2710   

Compressiv

e strength 

𝑅2 
Training data 0.9964 0.9755 

0.955 
0.93 

Testing data 0.9906 0.9401  

RMSE 
Training data 1.0494 2.7888 

3.783 
4.45 

Testing data 1.687 4.425  

MAE 
Training data 0.4032 1.4765  3.45 

Testing data 0.9154 2.3133   
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Fig. 7. Properties prediction using models for: a) D flow; b) L-Box; c) V-funnel; d) CS 

 

4. Conclusion 
It is received from the published articles that there 

were so limited studies concentrating on predicting either 

fresh or hardened properties of self-compacting concrete 

(SCC) using the optimized radial basis function neural 

network (RBFNN) method. Hence, it is tried to develop 

models for predicting the fresh and hardened properties of 

SCC by the RBFNN method. The RBFNN method has key 

parameters that can be optimized with optimization 

algorithms, where this study aimed to determine them 

using ant-lion optimization (ALO) and biogeography 

optimization (BBO) algorithms. The main results are as 

follows: 

 Results demonstrate powerful potential in the 

learning section as well as approximating in the 

testing phase. It can be seen that the proposed 

models have R2 in acceptable value in the learning 

and testing phase. It means that the correlation 



 

between observed and predicted properties of SCC 

from hybrid models is acceptable so that it 

represents high accuracy in the training and 

approximating process. 

 Regarding D flow, the results of ALO-RBFNN are 

so better than BBO-RBFNN as well as literature. 

For example, the RMSE value of the model by ALO 

in the training phase is 7.5154mm, while this value 

for the BBO-RBFNN model is more than twice, 

followed by Saha et al. (2020) at 11.67mm, and 

then Kaveh et al. (2018) by 36.29mm. 

 Regarding L-box, the results of ALO-RBFNN are 

better than BBO-RBFNN as well as literature. For 

example, the RMSE value of the model by ALO in 

the testing phase is 0.0265, while this value for the 

BBO-RBFNN model is roughly less than twice, and 

followed by Saha et al. (2020) at 0.025, and then 

Kaveh et al. (2018) by 0.06. 

 Turning to V-funnel results, the results of ALO-

RBFNN are extremely better than BBO-RBFNN as 

well as literature. For instance, 𝑅2 value of the 

model by ALO in the testing phase is 0.9951, while 

this value for BBO-RBFNN model is 0.9715, 

followed by Saha et al. (2020) at 0.958, and then 

Kaveh et al. (2018) by 0.87. 

 Finally, the result for CS also depicts the same 

outputs as above. Overall, the RBFNN model 

developed by ALO outperforms others, which 

depicts the capability of the ALO algorithm for 

determining the optimal parameters of the 

considered method. However, it is worth 

mentioning that the model developed with the BBO 

algorithm is also powerful. 

 For fresh and hardened properties of SCC in both 

optimized RBFNN (ALO-RBFNN and BBO-

RBFNN) proposed models, the estimated values 

indicate suitable agreement with measured ones, 

expressing the workability of suggested integrated 

algorithms to forecast the D flow, L-box, V-funnel, 

and CS with high precision. According to time 

series figures, developed models result in the 

lowest variation in the properties predicting 

process, providing roughly accurate predictions 

which can be used for practical applications. 
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