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Highlights 

➢ Introduction of a multi-objective optimization framework for transmission expansion planning using AC optimal power flow. 

➢ Fitness function incorporates investment costs, expected operation costs, and cost of load curtailment. 

➢ Formulation of optimization problem as large-scale non-convex mixed integer nonlinear programming problem. 

➢ Application of particle swarm optimization algorithm to search for optimal planning solutions. 

➢ Illustration of proposed method's performance using scenarios of fixed load and generation, fixed load and variable 
generation, and variable load and generation on IEEE 30-bus test system. 

 

Article Info   Abstract 

This article presents a multi-objective optimization framework for transmission expansion 
planning using AC optimal power flow to identify the most suitable set of projects and their 
scheduling along the planning horizon. The candidate plans are evaluated using a fitness function 
that considered objective function for transmission expansion planning problem is composed of 
two terms. The first term is related to the sum of investment costs which is the construction cost of 
new lines; the second term is related to the expected operation costs, which is the expected cost of 
generation in the power system. The third term is related to the cost of load curtailment. The 
optimization problem represented in this paper is a large-scale non-convex mixed integer nonlinear 
programming problem with multiple local minima. The transmission expansion planning 
procedure is formulated as an optimization problem to overcome the difficulties in solving the non-
convex and mixed-integer nature of the optimization problems. The particle swarm optimization 
algorithm searches for optimal planning to reach the fitness requirement. transmission expansion 
planning problem involves a decision on the location and number of new transmission lines. In 
optimization process all constrains are modeled beside problem which should be considered in 
investment. The proposed transmission expansion planning model has been applied to the well-
known IEEE 30-bus test system. In order to illustrated the performance of the proposed method, 
we consider three scenarios as fix load and generation, fixed load and variable generation and 
variable load and generation. The detailed results of the case study are presented and thoroughly 
analyzed. The obtained transmission expansion planning results show the efficiency of the 
proposed algorithm. 
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Indices  𝐺𝑖𝑗 Conductance of line ij 

AC-OPF AC optimal power flow 𝛾 Price factor 
CLC Cost of load curtailment INVC Investment cost 
EOC Expected operation costs 𝐿𝑖 Length of ith line 
IC Investment costs  Energy marginal section in reference bus 
IPM Interior Point Method OPC Operation cost 
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OPF Optimal Power Flow 𝑃𝑔𝑒𝑛 Active generation power 

PSO Particle swarm optimization 𝑃𝑙𝑜𝑎𝑑 Load active power 
RPP Reactive power planning 𝑄𝑙𝑜𝑎𝑑 Demand Reactive power 

TEP Transmission expansion planning 𝑄𝑔𝑒𝑛 Generator Reactive Power 

Parameters and variables  𝑺𝒋𝒊
𝒎𝒂𝒙 Maximum mixed power limit 

𝑎𝑐
𝑗
 Constant operation Price factor TP Time of study horizon 

𝑎𝑣
𝑗
 Variable operation Price factor 𝑉𝑖 Voltage of ith bus 

𝐵𝑖𝑗 Susceptance of line ij 𝑉𝑖
𝑚𝑎𝑥 Upper limit of voltage at bus i 

𝛿𝑖 Angle of voltage of ith bus 𝑉𝑖
𝑚𝑖𝑛 Lower limit of voltage at bus i 

 

1. Introduction 
Due to growing electricity consumption in the power 

system, new power lines in the transmission system are 

necessary to provide alternative paths to power transfer for 

future demand from generation. Using the Transmission 

Expansion Planning (TEP), these new lines that should be 

placed in the electrical power system are determined. 

Minimizing the investment costs of new lines is the main 

goal of TEP problems. In addition, in this minimizing 

process, the operational constraints should be considered. 

In deregulated power systems, nondiscriminatory and 

competitive environment providing is considered in the 

goal of TEP problem too.   

The first suitable transmission planning scheme is 

considered in the TEP problem, such as other planning 

problems. In the next step, this considered formulation 

written as an optimization problem. Finally, by applying 

the appropriate optimization technique, the best planning 

is achieved. In previous studies, both mathematical and 

heuristic optimization methods are applied for TEP 

problems. In order to run the optimization technique, the 

system's power Current should be done in each 

optimization step. Both of DC and AC power current 

models can be considered. Having an AC model is 

completer than the DC model, but this does not mean that 

DC models are always incorrect. 

The literature on this topic includes many publications 

that can be gathered in two large groups. On one side, there 

are applications designed to analyze pre-prepared 

expansion plans. Most of these formulations correspond to 

software packages developed by utilities or by research 

centers related to them. Packages as TRELSS and CREAM 

developed by EPRI and several others implemented by 

CEPEL in Brazil, ENEL in Italy, and EDF in France are 

examples of these approaches. On the other hand, there are 

optimization models designed to build expansion plans 

according to some criteria. The number of publications on 

this topic is very large [1], and all researchers do not adopt 

a common and general transmission expansion 

formulation. Traditionally, the expansion formulations 

included continuous variables to represent the capacity of 

new branches, thus requiring approximations to obtain a 

final technically feasible solution. For instance, Refs [2], 

[3]. describe linear and non-linear approaches to the TEP 

problem. Some other papers, as [4], [5], describe mixed-

integer formulations and adopt, for instance, Branch & 

Bound and Benders Decomposition based methods in a way 

to preserve the discrete nature of investments. Some others 

select investments according to a Merit Index or a trade-off 

relation between the investment cost and the resulting 

benefit [6], [7]. More recently, several emergent techniques 

as simulated annealing, genetic algorithms, Tabu search, 

and the game theory started to be applied to this problem. 

Ref [8]. describe the application of the harmony search 

algorithm to the transmission expansion problem, [9] 

details the use of Tabu Search [10], adopts simulated 

annealing,[11] and uses Grasp. Finally, ref. [12] describes a 

multi-agent implementation based on cooperative games. 

These authors mention the advantages of these approaches 

to address this complex combinatorial problem in 

identifying a feasible solution in a manageable computation 

time. 

Many kinds of literatures have been proposed methods 

for TEP. Ref [4] is considered losses costs and solved the 

planning by mixed-integer linear programming. 

Integration of TEP and generation expansion planning 

(GEP) is addressed in [13] analyzed in southern Africa. 

Xiufan Ma, Ying Zhou [14] proposed a coordination 

planning model between the TEP and GEP considering 

large wind farms. Also, transmission planning cost was 

taken into account as a risky constraint. The comprehensive 

optimal expansion planning model represents the capital 

cost of new generation, fuel cost, and capital cost of new 

lines with fuel transportation constraints [15]. Daniel 

Delgado and João Claro [16] propose an approach 

considering uncertainty in TEP that can help improve the 

balance between different and important concerns such as 

network utilization, demand satisfaction, or dynamic 

sourcing from lower-cost generation options. Probabilistic 

transmission expansion planning based on Congestion 

management and considering roulette wheel simulation to 

achieve the optimal capacity of new transmission lines is 

investigated [17]. The simultaneous approach of the TEP 

integrated substation expansion planning using DC optimal 

power current that minimized the sum of investment costs 

(IC) and expected operating costs considering uncertainty 

in load is reported in [18]. Recently, the TEP optimization 

problems integrated RPP problem has been done in some 
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of the literature. In ref [19], an AC model of TEP problem 

(AC-TEP) associated with Reactive Power Planning (RPP) 

for minimizing investment cost and maximizing social 

benefit at the same time is presented. Also, the Expected 

Energy Not Supplied (EENS) index is limited by a 

constraint to improve the system's reliability. A 

mathematical model for solving simultaneous TEP and 

RPP problems (TEPRPP) via an AC model Using a 

combined algorithm of genetic algorithm and Interior Point 

Method (IPM) is proposed in [20]. 

This paper proposes an AC-OPF based transmission 

expansion planning in which binary variables are related to 

the candidate lines. The proposed method's objectives are 

to minimize the investment cost, operation cost, and cost of 

load curtailment related to new transmission lines along 

the planning horizon subjected to several constraints 

having technical and financial natures. The problem of the 

proposed TEP is formulated as a multi-objective 

optimization problem that represents all the years of the 

planning horizon. Then PSO algorithm is employed to 

search for optimal planning. Regarding the mixed-integer 

nature of the objective function, we developed a set of 

adaptations to the Evolutionary PSO algorithm to turn it 

more adequate to treat discrete problems. The paper is 

organized as follows: In Section 2, the proposed problem 

formulation is presented. The particle optimization 

algorithm is presented in Section 3. Illustrative tests and 

discussions are demonstrated in Section 4, and finally, the 

major contributions and conclusions are drawn in Section 

5. 

2. Problem Formulation 
The formulation of TEP in this paper is defined as a 

discrete problem in which the k number of potential lines 

connected along jth path between pairs of nodes from N 

nodes of the system is established. The investment 

decisions are incorporated through UK's binary decision 

variables, which take the value 1 if line k is built and 0 

otherwise. In practice, these decisions can be thought of as 

selecting appropriate combinations of lines with different 

transmission capacities and technical characteristics. 

The objective function (F) of this paper includes a sum 

of the investment cost (INVC), operation cost (OPC) for 

setting up new transmission lines, and cost of load 

curtailment. Mathematically the objective function is 

expressed as: 

𝐹 = 𝐼𝑁𝑉𝐶 + 𝑂𝑃𝐶 + 𝐶𝐿𝐶 (1) 

where investment cost, operation cost, and cost of load 

curtailment are defined as Esq. (2) - (4), respectively. 

𝐼𝑁𝑉𝐶 = ∑𝐼𝐶𝑙 × 𝑢𝑙

𝑁𝑘

𝑙=1

× 𝐿𝑙 (2) 

𝑂𝑃𝐶 =∑𝑇𝑃 × 8760 × (𝛼𝑣
𝑗
𝑃𝑙𝑖𝑛𝑒
𝑗

+ 𝛼𝑐
𝑗
)

𝑁𝑘

𝑗=1

× 𝑢𝑙
𝑗
 (3) 

𝐶𝐿𝐶 = ∑ 𝛼𝑖𝑟𝑖

𝑁𝑏𝑢𝑠

𝑖=1

 (4) 

where ICI is ith line investment cost, Li is the length of 

ith transmission line, TP is study horizon, 𝜌𝑡
𝑁 is the price of 

power in horizon N and time t, 𝛼𝑣
𝑗
 and 𝛼𝑐

𝑗
 are variable and 

constant operation cost coefficients, respectively, and ul is a 

binary variable. 

The constraints of TEP problem can be described by 

Eqs. (5) - (16). Constraints (5) and (6) are active and 

reactive power balance constraints at every node. Eqs (7), 

(8) indicate the active power currents from existing and 

candidate lines, respectively. The reactive power currents of 

lines are given in (8). The constraint of binary variables is 

given by (9), which shows that the summation of binary 

variables is equal to building lines. The transmission 

capacity constraints for lines are defined as (13) for the real 

power injection and (14) for the reactive power injection in 

the lines, respectively. The losses of existing and candidate 

lines are limited by (15). Voltage limits are given by (16). 

[21], [22] 

𝑃𝑔𝑒𝑛
𝑖 − 𝑃𝑙𝑜𝑎𝑑

𝑖 (1 − 𝑟𝑖) = ∑ 𝑃𝐿𝑖𝑛𝑒
𝑗

𝑗∈𝑏𝑢𝑠𝑖

 (5) 

𝑄𝑔𝑒𝑛
𝑖 − 𝑄𝑙𝑜𝑎𝑑

𝑖 (1 − 𝑟𝑖) = ∑ 𝑄𝐿𝑖𝑛𝑒
𝑗

𝑗∈𝑏𝑢𝑠𝑖

 (6) 

𝑃𝐿𝑖𝑛𝑒
𝑖𝑗

= |𝑉𝑖|
2𝐺𝐿𝑖𝑛𝑒

𝑖𝑗
 

−|𝑉𝑖||𝑉𝑗| × (𝐺𝐿𝑖𝑛𝑒
𝑖𝑗

𝑐𝑜𝑠( 𝜃𝑖 − 𝜃𝑗) + 𝐵𝐿𝑖𝑛𝑒
𝑖𝑗

𝑠𝑖𝑛( 𝜃𝑖 − 𝜃𝑗)) 
(7) 

𝑄𝐿𝑖𝑛𝑒
𝑖𝑗

= −|𝑉𝑖|
2𝐵𝐿𝑖𝑛𝑒

𝑖𝑗
 

−|𝑉𝑖||𝑉𝑗| × (𝐺𝐿𝑖𝑛𝑒
𝑖𝑗

𝑠𝑖𝑛( 𝜃𝑖 − 𝜃𝑗) − 𝐵𝐿𝑖𝑛𝑒
𝑖𝑗

𝑐𝑜𝑠( 𝜃𝑖 − 𝜃𝑗)) 
(8) 

∑𝑢𝑙𝑡 = 𝑁

𝑇𝑃

𝑡=1

𝑙 (9) 

0 ≤ 𝑃𝑔𝑒𝑛
𝑖 ≤ 𝑃𝑔𝑒𝑛

𝑖,𝑚𝑎𝑥  (10) 
max,

,
min, i

gen
i

Lineex
i
gen QQQ 

 
(11) 

0 ≤ 𝑟𝑖 ≤ 𝑃𝐿𝑜𝑎𝑑
𝑖  (12) 

max,min, i
Line

i
Line

i
Line PPP 

 
(13) 

max,min, i
Line

i
Line

i
Line QQQ 

 
(14) 

max,min, i
loss

i
loss

i
loss PPP 

 
(15) 
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maxmin
iii VVV 

 
(16) 

 
3. Particle swarm optimization algorithm 

PSO was introduced by Kennedy and Eberhart (1995) 

as a result of motivation by the behavior of bird flocking, 

insect swarming, and fish schooling. It consists of several 

individuals (particles) refining their position in a given 

search space. Each particle is characterized by its position 

and represents a candidate solution to the problem at hand. 

The particles change their positions in a multi-dimensional 

search space to explore higher fitness positions. PSO starts 

with an initial random population of particles where each 

particle is a candidate solution. The particles' velocity and 

position are initialized at random. Each particle memorizes 

its own best position encountered so far during the 

optimization process, which is called the local best. On the 

other hand, the population memorizes the best position 

among all individual best positions obtained so far, the 

global best. Inertia weight is introduced to balance the 

particle's global and local exploration capabilities. The 

inertia weight is linearly decreased through optimization to 

emphasize the search globally at initial iterations and 

locally at final iterations. PSO has several advantages over 

other optimization techniques, including simple concepts, 

easy implementation, and computationally efficient. The 

PSO algorithm can be described in the following steps: 

1. Initialization: Initialize randomly n position vectors 

{𝑋𝑘(0), 𝑘 = 1,2, … , 𝑛} each size m (depending on the 

problem to be solved). The elements of Xk are uniformly 

distributed in a suitable range. Subsequently, initialize 

randomly n velocity vectors {𝑉𝑘(0), 𝑘 = 1,2, … , 𝑛} with 

elements uniformly distributed between a minimum and a 

maximum values. The fitness of each particle is evaluated 

using an objective function. Initialize the local best of each 

particle to its initial position and the global best to the best 

fitness among the best locals. Finally, initialize the range of 

the inertia weights w (0). 

2. Update velocity: Each element j of the velocity 

vector of the kth particle can be updated as follows: 
𝑣𝑘,𝑗(𝑡) = 𝑤(𝑡)𝑣𝑘,𝑗(𝑡 − 1) 

+𝑐1𝑟1 (𝑥𝑘,𝑗
𝐿 (𝑡 − 1) − 𝑥𝑘,𝑗(𝑡 − 1)) 

+𝑐2𝑟2 (𝑥𝑘,𝑗
𝐺 (𝑡 − 1) − 𝑥𝑘,𝑗(𝑡 − 1)) 

(17) 

where t is the iteration number, c1 is a positive constant 

called the cognitive parameter and controls the step 

towards the particle's local best position. c2 is a positive 

constant called the social parameter, and it controls the 

step size towards the global best position found by the 

entire swarm. r1 and r2 are uniformly distributed random 

numbers in [0, 1] to add randomness to the velocity 

updates, xk, j (t) represents the current position of the 

particle, 𝑥𝑘,𝑗
𝐿 (𝑡) is the particle's best position, and 𝑥𝑘,𝑗

𝐺 (𝑡) is 

the global best position, w(t) is the inertia weight to control 

the acceleration of the particle in its original direction. 

Lower values of w speed up the convergence to the optima, 

and higher values of w encourage exploration of the entire 

search space. The first term of the velocity update 

(𝑤(𝑡)𝑣𝑘,𝑗(𝑡 − 1)) is the inertia component to keep the 

particle moving in the same direction as in the previous 

iteration. The second term 𝑐1𝑟1 (𝑥𝑘,𝑗
𝐿 (𝑡 − 1) − 𝑥𝑘,𝑗(𝑡 − 1)) is 

called the cognitive component and acts as a memory of the 

particle, causing it to return to its local best that it has 

encountered so far. The third term 𝑐2𝑟2 (𝑥𝑘,𝑗
𝐺 (𝑡 − 1) −

𝑥𝑘,𝑗(𝑡 − 1)) is called the social component, as it causes the 

particle to move towards the global best. 

3. Update position: As shown in Fig. 1, after updating 

the velocity of each particle, the particle position is updated 

using the latest updated velocity as: 

𝑥𝑘,𝑗(𝑡) = 𝑣𝑘,𝑗(𝑡) + 𝑥𝑘,𝑗(𝑡 − 1) (18) 

4. Update bests: The fitness of each particle is 

evaluated according to the newly updated position. If the 

updated position leads to a better objective function value, 

the local best and the global best are updated.  

5. Stopping criteria: The process is repeated until the 

number of iterations since the last change of the best 

solution is greater than a pre-specified number, or the 

number of iterations reaches a maximum allowable 

number or the desired value of the objective function is 

reached.  

 
Fig. 1. Construction of the next position. 

Fig. 2 shows a flowchart of the PSO algorithm. More 

details about the PSO algorithm can be found in[23], [24].
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Fig. 2. Flowchart of the PSO algorithm. 

4. Case study 
In this section, the proposed planning problem is 

evaluated on the standard IEEE 30-bus 6-generator test 

system. Several techniques have been tested on this 

standard system with reported results in the literature. The 

IEEE 30 bus test case represents a portion of the American 

electric power system (in the Midwestern US). The system 

consists of 6 synchronous generators and 4 transformers. 

The system has 21 load points totalling 283.4 MW and 

126.2 Mvar. The detailed system data can be found in. The 

basic configuration of the IEEE-30 bus system is shown in 

Fig. 3. The initial transmission network is composed of 29 

transmission lines. Seventeen new candidate lines are 

considered for our study. Table 1 represents the candidate 

lines data. Project life-time and discount rate are assumed 

5 years and 10%, respectively. To demonstrate the 

effectiveness of utilizing the proposed TEP three scenarios 

are analyzed. Description of each scenario and the results 

of the simulations are given below:

Start 

Update velocities and 
 positions according to 

 (17) , (18)   

Evaluate the fitness of each particle   

Update Pbest and gbest    

Optimal value of the  
controller parameters    

End    

No    

Yes 

Select parameters of PSO: 

 N, C1, C2, ω 

Satisfy stopping  
criterion    

Initialize Pbest with a copy 
 of the position for particle, 

 determine gbest  

Generate the randomly positions 
 and velocities of particles 
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Fig. 3. The IEEE 30-bus system configuration. 

Scenario 1: In this scenario, it is considered that 

generators production and loads of system is fixed. Here, 

two objectives as an investment cost and operation cost, are 

discussed. 

Scenario 2: In this scenario, it is considered that 

generator production can be changed while the system 

loads are fixed. Investment cost and operation cost as 

objective functions of the problem are debated.  

Scenario 3: In this scenario, Investment cost, 

operation cost, and cost of load curtailment are objective 

functions of planning in this scenario. To optimal planning 

load and generation can be changed. 

The results of the proposed planning method are 

compared with the results of the other methods. In this 

case, the PSO algorithm is used to solve the proposed 

planning problem. For this purpose, an initial population of 

the PSO algorithm is randomly generated, and the 

investment cost is calculated for each particle. The best 

particle is chosen, and the velocity of each particle is 

updated based upon the PSO rules, and eventually, the stop 

condition of the PSO algorithm is checked. In this paper, 

the convergence criterion is considered as fifteen iterations 

in algorithm without any changes in the best fitness. 

Eventually, by the convergence of PSO, the new lines are 

determined. 

Table 1. Candidates line data. 

Candidate lines From To Capacity (MW) Reactance (p.u.) Susceptance (p.u.) 
Investment cost  

($ 106 US) 

Line 1 2 6 60 0.130 0 22 

Line 2 8 15 100 0.04 0.110 21 

Line 3 4 18 100 0.04 0.110 19 

Line 4 19 28 100 0.05 0.140 35 

Line 5 5 6 100 0.0367 0.161 10 
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Line 6 9 16 100 0.02 0.120 10 

Line 7 20 22 100 0.02 0.120 18 

Line 8 30 5 100 0.03 0.120 17 

Line 9 14 16 100 0.04 0.110 32 

Line 10 14 18 100 0.04 0.110 25 

Line 11 18 24 100 0.05 0.130 20 

Line 12 22 25 100 0.05 0.130 30 

Line 13 26 10 100 0.05 0.15 30 

Line 14 9 2 100 0.015 0.2 22 

Line 15 11 14 100 0.05 0.2 10 

Line 16 25 21 100 0.022 0.21 20 

Line 17 2 30 100 0.05 0.20 21 

 

Complete results related to the testing case are shown 

in Table 2. This table shows that 4 and 5 new lines are added 

for transmission expansion planning in three scenarios, 

respectively. Figs. 4, 5, and 6 show the convergence of PSO 

for three scenarios of the proposed method (proposed AC-

TEP problem). It is clearly seen that the algorithm is 

converged after hundred iterations. In order to verify the 

effectiveness of the proposed planning method, the results 

of the three scenarios are compared. Table 3 shows the 

comparative results related to the case study. As shown in 

this table, the total planning cost in three scenarios is 

234.08, 125, and 103.5 ($ × 106). Where scenario 3 and 2 

result 46.59%, 55.78% reduction of total cost compared to 

scenario 1, which shows a significant reduction compared 

to scenario 1. This economic aspect of the proposed method 

clearly emphasizes the priority of the presented planning. 

It is clearly seen from Table 3 that the proposed method 

reduces the planning cost.

Table 2. Results for test case. 

 Scenario 1 Scenario 2 Scenario 3 

Lines addition in AC-

TEP  

n26-10, n14-18 

n2-30, n20-22 

n11-14, n18-24 

n14-18, n25-21 

n25-21, n11-14, n18-24,  

n11-14, n5-6, n9-16, 

 

Fig. 4. Convergence of PSO for scenario 1. 
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Fig. 5. Convergence of PSO for scenario 2. 

 
Fig. 6. Convergence of PSO for scenario 3. 

Table 3. Comparison of the proposed TEP results. 

 Scenario 1 Scenario 2 Scenario 3 

Investment cost of the new lines (IC) ( $ × 106) 100 75 84 

Expected operation costs (EOC) ($ × 106) 134.08 50 17 

Cost of load curtailment (CLC) ($ × 106) - - 2.49 

Total cost of planning ($ × 106) 234.08 125 103.5 

 

5. Conclusion 
In this paper, a new expansion planning model for 

transmission was formulated and applied to a test system. 

The proposed method allows the power system planners to 

change the system's topology to reach the best optimal plan 

for the expanded system in the future. A search algorithm 

for solving the problem of TEP has been proposed. The 

proposed algorithm is tested on the IEEE 30-bus test 

system as the first attempt for TEP. The results of the case 

study were shown and completely analyzed. A comparative 

analysis from the application of the proposed TEP with the 

previous TEP is presented. The obtained result shows the 

performance and robustness of the proposed methodology 

using AC model for solving the TEP problem even in real-
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world and large-scale systems. Also, the proposed planning 

method significantly improves the cost related to TEP. 
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